

The Snow Use Case

Piero Fraternali, Rocio Torres, Sergio Herrera Politecnico di Milano

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 825480.

09/12/2021

The idea

- There is a lot of multimedia content out there, produced by
 - People
 - Ground sensors (e.g., touristic web cams)
- There are many environmental problems that lack
 affordable and accessible input data
- Question: is public web visual content good enough to help in such environmental problems?

The content INPUT

- User generated
 - 700k Flickr images crawled so far within 300x160 km
- Sensor generated
 - 2k webcams queried every minute (1 to 1440 images per web cam per day)
 - More than **10M** images crawled
- Digital Elevation Model
 - Dem3: 71GB (World coverage)
 - Dem1: 12GB (Alps coverage)
 - Dem1: 638GB (World coverage | recently released)

OUTPUT

 Virtual Snow Indexes: numerical time series that are a proxy of the quantity of water stored in the snow pack (Snow Water Equivalent – SWE)

Sodalite

The multimedia pipelines

- Differences
 - Web cam images have high temporal density, UG images have broader spatial coverage
 - UG photos searched by keywords may be irrelevant, webcam images always portrait mountains

Webcam image enhancement

Remove/attenuate:

- Variability of illumination
- Shadows
- People & irrelevant objects

Snow mask extraction

→ Snow classification at the pixel level

Snow mask extraction

How the SNOW use case relates to the SODALITE goals

- The data processing pipeline includes CPU-bound, GPU-bound, and IObound operations
- Some tasks now use Deep Learning, which is a hot topic for computation optimization
- The UC is a benchmark for an optimized and power-efficient execution environment
- The use of the SODALITE may improve
 - images processed per second & IO management (+20% throughput)
 - Classification accuracy (+5-10%), thanks to the more image pre and postprocessing steps granted by the performance increase

Improvements due to SODALITE

- Modelling simplification and effort reduction in developing deployment code.
- No violation of SLA for the Skyline Extractor thanks to the Node Manager where the baseline rule-based approach which obtained 150 violations.
- Optimization of resources consumption, thanks to the Node Manager (~40% speedup with ~20% less core usage)
- Easy configuration of monitoring dashboard and alert service
- Prevention of resource usage violations thanks to the deployment reconfiguration capability

Future work

- Optimize training of DL models on HPC thanks to a MODAK-optimized docker
- Connect the various components through data exchange pipelines (collaboration with RADON)
- Apply Node Manager to all components
- Exploit advanced Al-powered alert and refactoring scenarios

Exploitation

- Support commercial partners willing to implement services for the introduction of AI and Computer Vision solutions in business cases of the Public Administration and of private enterprises.
- The SNOW Use case has been successfully demonstrated to the Environment Agency of Region Lombardy, ARPA. It has spawned interest for a more general and versatile architecture capable of applying analysis components to visual inputs for a variety of environment intelligence tasks.

Optional slides

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 825480.

A case study

Regulation of mountain inflow dependent lakes

Lake Como

Catchment area Lake Como 4500 km² Reservoirs Lake Como 247 Mm³ Alpine HP 545 Mm³ **Stakeholders** Farmers: irrigated area 1400 km² Floods: lake and downstream

La Provincia

Per il Como rimonta vincente n dela constana il Comunes gamer vince i a Regionali um combantes primitació da rigentas. Pos i cambi destaival Berta a Roamane samp doc havi per la vittaria the artiva ar 90

LA MISSIONE DI FRANCESCO SCUOTE Paratie, Roma prova a dare la sveglia LE COSCIENZE

Vertice con il governo e Italia Sicura per cercare di superare l'impasse Maroni-Lucini

Length in due layse th design Marie Banghglis and Brown dat Carame Institut gastly to be of acousting ments on messagin perfects no optá religione o pre upel populitica. E Tixoteca tere

-

File-off Seta heading and and see mergenza migr anci dal cimiter mann i blyacch

Formalization as an optimization problem

- Decide the daily lake outflow (🛛 lake level)
- So to
 - Maximize water for downstream irrigation
 - Minimize # of flood days
- Respecting
 - Minimum outflow requirement for ecological preservation of effluents
- Based on
 - Policy input (X)

Results

PCP: upper bound policy with perfect knowledge of future BCP: Baseline, regulator only considers lake level and day of year ICP (X) regulator knows information X

SWE: snow water equivalent data estimated from Region Lombardy VSI: virtual snow indexes from nearby mountain images

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 825480.