
SOftware Defined AppLication Infrastructures managemenT and Engineering

D2.3
Requirements, KPIs, evaluation plan and

architecture - final version

Polimi
31/07/2021

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 825480.

Project No 825480.

Deliverable data

Deliverable Requirements, KPIs, evaluation plan and
architecture - final version

Authors Luciano Baresi (POLIMI), Elisabetta Di Nitto
(POLIMI), Giovanni Quattrocchi (POLIMI), Dragan
Radolović (XLAB), Alexander Maslennikov (XLAB),
Alfio Lazzaro (HPE), Jesús Gorroñogoitia (Atos),
Jesús Ramos Rivas (Atos), Kamil Tokmakov
(USTUTT), Steven Presser (USTUTT), Zoe Vasileiou
(CERTH), Nikolaidis Efstathios (CERTH), Dourvas
Nikolaos (CERTH), Kalman Meth (IBM), Paul Mundt
(ADPT), Indika Weerasingha Dewage (JADS)

Reviewers Nejc Bat (XLAB), Kalman Meth (IBM)

Dissemination level Public

History of changes

Name Change Date

v0.9 complete
release ready

for internal
review

28.7.2021

v1.0 finalized for
submission

29.7.2021

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 1
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Executive Summary
This deliverable is the continuation and the last iteration of deliverables D2.1 and D2.2. It provides
the final description of the requirements defined by the consortium and of their final status. It also
supplies the final version of the architecture of the SODALITE framework, and the conclusive
presentation of KPIs and their evaluation process.
As for requirements, it summarises the requirements completed and deleted over the first two
years, those completed, or that will be completed, in the third year, and the deviations we have
identified. It refines the architecture of the proposed framework with the novel aspects emerged in
the last year and a special emphasis on the security aspects, which are now better integrated with
the different use cases. The architecture described here complies with the release of the SODALITE
environment at month 30, that is, Milestone MS7 (Final Architecture). The work on our KPIs
condenses what we did in the past two years, lists all KPIs, updates the evaluation plan, and
focuses mainly on the automated assessment of the security vulnerabilities embedded in delivered
artifacts.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 2
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Glossary
This section provides a reference for the main terms used in this document. Most of the terms are
defined the first time they are used in the document, but their definition is also reported here for
the sake of simplicity and speed. Reported terms are classified under seven main categories.

Acronyms

AADM Abstract Application Deployment Model

AAI Authentication and Authorization Infrastructure

ADM Application Deployment Model

AM Ansible Model

AOE Application Ops Expert

CSAR Cloud Service Archive

CPU Central Processing Unit

DSL Domain Specific Language

GPU Graphic Processing Unit

HPC High Performance Computing

IaaS Infrastructure as a Service

IaC Infrastructure as Code

IAM Identity and Access Management

JWT JSON Web Token

KB Semantic Knowledge Base

KPI Key Performance Indicator

LRE Lightweight Runtime Environment

MOM Message Oriented Middleware

NFR Non Functional Requirement

OASIS Organization for the Advancement of Structured Information Standards

OM Optimization Model

OWL Web Ontology Language

PBS Portable Batch System

QE Quality Expert

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 3
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

RDF Resource Description Framework

RE Resource Expert

RM Resource Model

SD SODALITE Design-time

SR SODALITE Runtime

Torque Terascale Open-source Resource and QUEue Manager

TOSCA Topology and Orchestration Specification for Cloud Applications

VPN Virtual Private Network

General terms

Adaptation plan An ordered set of actions that modify the current deployment
of a system.

Anti-pattern A common design solution/decision that generates known
negative consequences onto the design.

Blueprint A plan or set of proposals to carry out some work. An IT
blueprint is an artifact created to guide priorities, projects,
budgets, staffing and other IT strategy-related initiatives. As for
IaC, a blueprint is the scripting code that enables resource
provisioning, configuration, and application deployment.

Code smell Any characteristic in the code that possibly indicates a
potential defect/bug.

Design pattern Recurring solution that carries positive consequences onto the
design.

Design smell Any element in the design that indicates violation of
fundamental design principles and negatively affects design
quality.

Domain Specific Language A design language that is specific to a particular domain.

Infrastructure as Code Code that does not define the application logic but, instead,
defines targeted states of the infrastructure/application the
way a computational infrastructure is to be provisioned and
configured and the way an application is to be deployed on
top of it.

IaC artifacts These are the documentation and models associated with
Infrastructure as Code, as well as the code itself.

Infrastructure as a Service A specific service model that corresponds to offering
virtualized hardware, that is, virtual machines and similar
abstractions.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 4
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Lightweight application base
image

A container image (e.g., Docker or Singularity image).

Over-provisioning The allocation of more computing resources (e.g., virtual
machines and CPUs) than strictly necessary.

Playbook Ansible recipe (or script) for executing a series of steps.

Use case A possible case of usage of a certain piece of so�ware.
SODALITE distinguishes between UML use cases, those
reported in this document, and Demonstrating use cases, that
is, the specific application we exploit to demonstrate the
SODALITE environment. These last ones are also called
SODALITE case studies.

Resources managed by SODALITE

Application component An executable the application of interest is partitioned in.

Container Engine An engine for running lightweight containers. It enables
operating-system-level virtualization and the existence of
multiple isolated container instances.

Edge/Fog computing A distributed computing paradigm that brings computation
and data storage closer to the location where they are needed,
to improve response times and save bandwidth.

Execution platform Provides the means to execute the different application
components; e.g., HPC, GPU, Openstack Cloud, etc.

Lightweight Runtime
Environment

A “simple” execution environment provided by operating
systems or by virtualization technologies.

Message oriented
middleware

So�ware infrastructure that supports sending and receiving
messages among distributed elements.

Middleware framework The underlying glue that helps both storing the different data
and artifacts and making the different elements communicate.

Monitoring agent So�ware entity that collects usage and performance statistics
about system resources.

Resource Any computing artifact needed to deploy and run an
application.

Serverless computing A cloud-computing execution model in which the user submits
only the tasks to be executed to the cloud provider, which
manages the computing infrastructure transparently.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 5
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Specific targeted technologies

Docker An open platform for developing, shipping, and running
applications. Docker provides the ability to package and run
an application in a loosely isolated environment called a
container.

Istio A Service Mesh on top of a cluster manager such as
Kubernetes.

Keycloak Open source Identity and Access management

Kompose Kompose is a conversion tool for Docker Compose to container
orchestrators such as Kubernetes.

Kubernetes An open-source system for automating deployment, scaling,
and management of containerized applications.

MODAK The SODALITE Application Optimizer, MODAK, offers a
framework that generates the scripts to be executed in an HPC
environment to achieve an optimized execution of application
components.

OpenStack An open source cloud operating system.

OpenFaaS A popular and highly scalable serverless computing / cloud
functions platform that allows for functional logic to be written
and triggered in response to events or directly via a REST API.

Portable Batch System A job scheduler that is designed to manage the distribution of
batch jobs and interactive sessions across the available nodes
in the HPC cluster.

Singularity A container solution like Docker that is created specifically for
scientific applications and workflows in a HPC environment.

Skydive A so�ware tool that produces network monitoring metrics.

Slurm An open source, fault-tolerant, and highly scalable cluster
management and job scheduling system for large and small
Linux clusters.

Terascale Open-source
Resource and QUEue
Manager (Torque)

A distributed resource manager that provides the functionality
of PBS but also extends it to provide scalability, fault tolerance,
usability and functionality.

Vault A tool that helps secure, store and tightly control access to
tokens, passwords, certificates, encryption keys for protecting
secrets and other sensitive data.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 6
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

SODALITE elements

Abstract Application Tuple An Abstract Application tuple comprises an abstract
description of the application, its infrastructure, and its
non-functional requirements.

Application Deployment
Model/Abstract Application
Deployment Model

An abstract model defined through the use of SODALITE DSL
with concrete definitions for constraints, parameters,
functional and nonfunctional requirements and goals, thus
defining an instance of the DSL model.

Infrastructure Abstract
Pattern

A defined set of infrastructure resource types, interlinked with
known relationship types (dependencies, compatibility, etc),
aimed at supporting the recommendation generating
mechanism of the Semantic Reasoner.

Semantic Knowledge Base All modeling artefacts made available to the SODALITE users.

SODALITE Design-time All SODALITE components made available to the user to
support the design and development of Infrastructure as Code
(IaC).

SODALITE DSL The modeling language offered to the SODALITE users to
support design and development of IaC.

SODALITE Runtime All SODALITE components supporting the execution of
applications on top of heterogeneous resources.

Taxonomy of Infrastructure
Bugs/Defects and
Resolutions

A classification of the common bugs and their resolutions for
infrastructure designs and IaC code specifications.

Interchange languages

OWL2 An ontology language for the Semantic Web with formally
defined meaning. OWL2 ontologies provide classes, properties,
individuals, and data values and are stored as Semantic Web
documents. OWL2 ontologies can be used along with
information written in RDF, and OWL2 ontologies themselves
are primarily exchanged as RDF documents.

TOSCA An OASIS standard that defines the interoperable description
of services and applications hosted on the cloud and
elsewhere, thereby enabling portability and automated
management across cloud providers regardless of underlying
platform or infrastructure; thus, expanding customer choice,
improving reliability, and reducing cost and time-to-value.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 7
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Table of contents
Executive Summary 2

Glossary 3

Table of contents 8

1 Introduction 11
1.1 Context 11
1.2 SODALITE goals 11
1.3 Goals of this document 12
1.4 Work performed from the beginning of the project 13
1.5 Progress beyond the state of the art and potential impact 14
1.6 Relationships with other WPs 14
1.7 Structure of the document 14

2 Final status of requirement assessment 16
2.1 Identified Use Cases 16

2.1.1 Actors 16
2.1.2 Use cases up to Year Two 17
2.1.3 New Use Case 17

2.2 Completed requirements 18
2.2.1 Up to the second year 18
2.2.2 Completed by Month 30 20

2.3 Requirements foreseen to be completed by month 33 22
2.4 Cancelled requirements 26

3 Architecture 28
3.1 General architecture 28
3.2 Security Pillar 29

3.2.1 Security Pillar Toolkit 30
3.2.2 IAM and Secrets Vault configuration for new Project Domain 30
3.2.3 Login 32
3.2.4 Check JWT token 33
3.2.5 Save Secret in the Vault 34
3.2.6 Read Secret from the Vault 35

3.3 Modelling Layer 36
3.3.1 Component descriptions 36

3.3.1.1 SODALITE IDE 37
3.3.1.2 Semantic Reasoner (Knowledge Base Service - KBS) 38
3.3.1.3 Semantic Knowledge Base (KB) 39

3.3.2 Use Case Sequence diagrams 39
3.3.2.1 UC13: Model Resources 40
3.3.2.2 UC1: Define Application Deployment Model 42

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 8
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

3.3.2.3 UC2: Select Resources 43
3.3.2.4 UC12: Map Resources and Optimisations 44
3.3.2.5 UC14: Estimate Quality Characteristics of Applications and Workload 45

3.4 Infrastructure as Code Layer 45
3.4.1 Component Descriptions 46

3.4.1.1 Abstract Model Parser 46
3.4.1.2 IaC Blueprint Builder 47
3.4.1.3 IaC Model Repository 47
3.4.1.4 Runtime Image Builder 48
3.4.1.5 Concrete Image Builder 48
3.4.1.6 Application Optimiser - MODAK 48
3.4.1.7 IaC Verifier 49
3.4.1.8 Verification Model Builder 49
3.4.1.9 Topology Verifier 49
3.4.1.10 Provisioning Workflow Verifier 50
3.4.1.11 Bug Predictor and Fixer 50
3.4.1.12 Predictive Model Builder 50
3.4.1.13 IaC Quality Assessor 51
3.4.1.14 Platform Discovery Service 51

3.4.2 Use Case Sequence diagrams 51
3.4.2.1 UC3: Generate IaC 52
3.4.2.2 UC4: Verify IaC 53
3.4.2.3 UC5: Predict and Correct Bugs 54
3.4.2.4 UC11: Define IaC Bugs Taxonomy 56
3.4.2.5 UC15: Statically Optimise Application and Deployment 57
3.4.2.6 UC16: Build Runtime images 58
3.4.2.7 UC17: Platform Discovery Service 59

3.5 Runtime Layer 60
3.5.1 Component Descriptions 61

3.5.1.1 xOpera REST API 61
3.5.1.2 Monitoring + Exporters 62
3.5.1.3 Monitoring Dashboard 62
3.5.1.4 Alert Manager 62
3.5.1.5 Deployment Refactorer 62
3.5.1.6 Node Manager 63
3.5.1.7 Refactoring Option Discoverer 64
3.5.1.8 Rule File Server 64

3.5.2 Sequence Diagrams 64
3.5.2.1 UC6: Execute Provisioning, Deployment and Configuration 65
3.5.2.2 UC7: Start Batch Application 67
3.5.2.3 UC8: Monitor Runtime 69
3.5.2.4 UC9: Identify Refactoring Options 71

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 9
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

3.5.2.5 UC10: Execute Partial Redeployment 72
3.5.2.6 UC18: Deployment Governance 74

4 Evaluation plan and KPI accomplishment 76
4.1 Operationalization and measurement of KPIs 76
4.2 Evaluation of the platform by the case study owners 78
4.3 Code quality control processes 79

4.3.1 Tools 79
4.3.2 Possible Metrics 80
4.3.3 Open Issues 80

5 Conclusions 82

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 10
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

1 Introduction

1.1 Context
Uniform, standardized infrastructures in computing centres are increasingly provided as services.
Thanks to them, applications in multiple domains, including Industry 4.0, smart environments and
many others are nowadays easier to manage. There are, however, many other applications that
need to adopt ad-hoc and optimized infrastructures to efficiently execute specific categories of jobs
or components. For example, consider a web application organized according to a microservice
architecture that, among the other features, runs an AI inference algorithm, for instance, to
recognize specific objects within some images or to identify the products that a certain user will,
likely, prefer. This application would benefit from an heterogeneous setting as the microservices
and web server could find their optimal configuration on the cloud, while at least part of the
inference algorithm or at least its training phase could run more effectively on an HPC cluster
based, for instance, on GPUs. On the one hand, such a configuration can bring several advantages
in terms of efficient use of the available resources and effective execution of the system. On the
other hand, being able to effectively deploy and operate application components in an
heterogeneous environment is not easy and today requires an in-depth knowledge of each target
infrastructure, of the execution models each of them support, and of the mechanisms that can be
exploited to efficiently enable information exchange between the application parts deployed on
different types of resources.
With the aim of simplifying the adoption of heterogeneous infrastructures ensuring the possibility
to fine-tune performance, the SODALITE framework offers modeling and runtime features to
simplify the creation, the deployment and operation of complex applications that require the
adoption of heterogeneous computational environments.

1.2 SODALITE goals
The main project goals can be summarized as follows:

● Allow the SODALITE user to create deployment models in a simple and smart way. The
SODALITE IDE is coupled with an ontology-based reasoning engine that guides the user in
the definition of the deployment model, providing context-dependent suggestions, e.g., on
missing dependencies and properties to be specified for a certain component, given its
type, and assigning proper default and resource-dependent values to the pieces of
information that are le� underspecified by the user.

● Support design-time optimization of applications, especially in the case they adopt HPC
resources. To exploit HPC resources in the best possible way, the application code may
need to be tuned and/or scaling actions may need to be executed (e.g., increasing the
number of cores, accelerating with GPUs or coprocessors, enabling faster storage, etc.).
Such actions must be tailored considering the type of application components to be
deployed, their QoS requirements and the available resources. The SODALITE Application
Optimizer, MODAK, focuses on these issues and offers a framework that, given the
specification of a few constraints as part of a deployment model, is able to generate the
scripts to be executed in an HPC environment to achieve an optimized execution of
application components.

● Support resource experts in modelling their resources and in automating the process of
discovering new resources and deriving suitable models for them.

● Support the identification of bug smells in deployment models and of possible
reconfiguration options of running application configurations. Thanks to machine learning,
SODALITE analyses the previous history of deployment models that had to be corrected to
identify bug smells, thus building a taxonomy of bug smells that is then used to provide
suggestions to DevOps experts. A similar learning mechanism is also used at runtime to

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 11
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

identify possible configurations that perform better than others and suggest them to
DevOps experts when the monitoring system reveals the presence of problems in the
current configuration.

● Offer light-weight execution environments that are essentially cross-platform containers that
enable the possibility to execute, with different performance, the same application
components on heterogeneous resources in a seamless way and allow them to be built
automatically.

● Incorporate monitoring configuration within deployment models to automate the execution
of the monitoring infrastructure and to collect monitoring data from multiple and
heterogeneous platforms.

● Support runtime optimisation of applications by dynamically scaling in and out
computational resources depending on the specific applications being considered.

● Offer suitable mechanisms to support data placement-aware deployment and data
movement between HPC, Cloud and edge resources. Data placement and movement across
memory, storage or across infrastructures is important for application performance.
SODALITE aims to optimise data movement at two different levels: single components and
compositions of multiple components. Many components use accelerators like GPUs to
improve their performance. One of the major bottlenecks in getting efficient performance
from GPUs is the data movement across the host CPU and the device GPU. CPUs and GPUs
have dedicated memory and the data is usually moved to the GPU for computations and
the results are then copied back. In the context of application optimization, we explore
asynchronous data transfer and prefetching as a way to address this issue. For what
concerns the composition of multiple components, these usually communicate by reading
and writing data in a persistent memory like files. If the applications are deployed across
different targets, then the data is communicated over the network. In SODALITE we explore
the usage of efficient data movement across storage and network to improve the workflow
performance.

● Offer Advanced orchestration features, including the possibility to reconfigure part of a the
infrastructure or the deployed application, the parallelization of deployment execution to
make it faster, the possibility to restart or resume a failed deployment from the point of
failure as well as the definition of a well-designed REST API and support for the newly
introduced orchestration features.

● Enable secure and privacy-aware operation of the infrastructure. Providing proper identity
and access management is a crucial part of protecting both user data and sensible project
information. There are two different facets we will consider in the scope of SODALITE. The
first one concerns the mechanisms that control access to the SODALITE platform itself. This
is covered by a role-based Identity and Access Management (IAM) implementation
(Keycloak) for SODALITE users and other implementations for secret and credential
management (e.g., Vault or similar). The second aspect concerns the possibility to model,
as part of the resources made available to the DevOps teams and suitable to support
application deployment, those dedicated middleware components, such as VPNs, to
deploy and operate applications properly.

1.3 Goals of this document
This specific document concludes the series of documents (D2.1 and D2.2) that provide an
overview on the SODALITE approach by defining its requirements, its so�ware architecture, and
evaluation plan. In particular, this document reports about the implementation status of all
SODALITE requirements, extends and ameliorates the overall architecture of the SODALITE
framework, and reexamines the evaluation plan, which aims at: 1) guaranteeing that the SODALITE
framework addresses the research and technical challenges that have been defined during the
project conception, and 2) ensuring a good level of quality of the SODALITE code also from the

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 12
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

security viewpoint. The work presented in this document aims to finalize all these aspects and
provide the consortium with a solid revision of all these concepts, which are being finalized in the
last phase of the project.

1.4 Work performed from the beginning of the project
As already mentioned, this deliverable is the final result of a set of tasks aiming at:

● Enabling all partners to achieve a shared and overall understanding of the challenges to be
addressed in the project - this work has led to identification of the main stakeholders for
the SODALITE platform and to the definition of several use cases and requirements that
have driven all SODALITE development activities. More specifically, with the involvement
and collaboration of all partners, we identified three main stakeholders, 16 UML use cases
at the beginning of the project and another two use cases in the following years. The
analysis of these use cases has generated the definition of 82 requirements in the first
project year, to which another 21 have been added in the second project year. In that same
year, 8 requirements have been discarded, while one has been discarded in the third year.
These numbers are summarized in the table below.

M6 M24 M30 Total

SODALITE users 3 0 0 3

UML Use cases 16 +1 +1 18

Requirements 82 +21 -8 -2 93

● Defining the architecture of the SODALITE framework in terms of all its subcomponents and
the interaction among them - the resulting architecture has been the element that has
enabled the parallel development of multiple components, a continuous integration
approach, as well as the possibility to keep the development process under control. The
SODALITE architecture, in its final version, includes three main layers (modelling,
infrastructure as code, and runtime) supported by a security pillar and is composed of 15
main components. The architectural analysis has required the development of 4
component diagrams focusing on multiple perspectives and 21 sequence diagrams. As
mentioned, the definition of the architecture has enabled the proper configuration of our
CI/CD environment, which includes the following tools: Jenkins for automating the
execution of tests and the creation of dockerised components, DockerHub for storing our
components, SonarCloud and Snyk for code analysis.

● Developing a proper evaluation plan that has taken its roots from the KPIs defined in the
grant agreement and has applied them in the SODALITE case studies; the evaluation plan
has then been extended to include also the procedures and automated tools aiming at
keeping the quality of the SODALITE code under control. The assessment of the KPIs has
required the definition of a measurement process that also includes some experiments
with external users.

While the three types of results achieved by this work package are not directly exploitable, they
have been the basis for the understanding, development and assessment of all SODALITE results.
The work conducted within WP2 and reported in this deliverable has been disseminated through
some presentations and the writing of two papers that provide an overview of the SODALITE
framework (the reader can refer to the dissemination deliverable for more information).
Additionally, it is driving the writing of a book that provides a synthesis of the SODALITE results.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 13
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

1.5 Progress beyond the state of the art and potential impact
This deliverable is contributing to the progress beyond the state of the art by offering a complete
consolidation of the SODALITE requirements and of the corresponding architecture. The SODALITE
framework resulting from this implementation represents a novel result in the literature because it
simplifies the deployment and operation of complex applications on multiple heterogeneous
infrastructures. While there are multiple tools and approaches that support such activities in a
purely cloud-based context, the novelty concerns the possibility to target heterogeneous resources.
Additionally, the project offers a number of specific innovations that range from the smart editing
features offered by the IDE and the supporting ontology to the optimization features offered by
MODAK, the dynamic discovery and automated generation of resource models, the verification
approach based on the identification of code smells, the refactoring, etc.
As already discussed in D2.1, in the third project year we are undertaking the third development
iteration to consolidate the SODALITE platform. Among the other aspects, we are focusing on the
mechanisms for data movement, on the integration of the runtime optimisation and
reconfiguration mechanisms, and on the usage of FaaS resources especially for what concerns the
edge part.
In order to increase the impact of the SODALITE framework, we are paying particular attention to
the quality of code and its robustness from the security perspective. Moreover, we are continuing
the integration and testing iterations and have decided to have monthly testing of the SODALITE
platform by the case study owners. Finally, we are planning the execution of experiments with
external end users and the release of part of the SODALITE platform as a service in a sand-box
environment.

1.6 Relationships with other WPs
This deliverable is one of the cornerstones of the whole project. It defines the requirements and
architecture on which the whole SODALITE framework is based. Moreover, it describes the
evaluation plan adopted in the project to assess the artifacts developed and the results obtained.
As such, this document is supposed to guide the work of both the technical work packages
(WP3-WP5) and of the work package in charge of the demonstrators and of the evaluation (WP6).
The evaluation plan described in this deliverable and in its previous versions is executed in WP6
and the results that will be achieved will be reported in deliverable D6.4 (Final implementation and
evaluation of the SODALITE platform and use cases), which will show the extent to which the
SODALITE framework addresses the needs by the case study owners and fulfills the KPIs defined at
the beginning of the project.

1.7 Structure of the document
This last iteration of the set of documents on requirements, architecture, and KPIs is structured in a
way similar to the previous deliverables D2.1 and D2.2:

● Section 2 focuses on requirements. We organize them in several different groups: those
fully met at the end of year two, those met at the current M30, those that will be met by the
end of the project, and those that have been discarded, together with the motivations for
this choice.

● Section 3 provides a coherent and updated view of the architecture. This section gives the
final picture of what components are part of the SODALITE offer and how they cooperate to
meet the different goals. We want to give a clear definition of the architecture to continue
the development, and we have also revised and ameliorated the integration between the
way SODALITE deals with authentication and authorization and the other components. This
means that we have restructured the architecture, and its description, thoroughly to better
explain the particular components and their role in the different scenarios.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 14
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

● Section 4 provides a short summary of the evaluation plan that has been described in
further details in D2.2. Moreover, it highlights the work done on assessing the security
issues of delivered artifacts ---by means of automated analysis--- with the objective to
deliver a more robust infrastructure.

● Finally Section 5 draws the conclusions.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 15
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

2 Final status of requirement assessment
This section lists all the requirements the project has defined from the beginning and provides a
clear summary of whether and how we implemented them. The presentation touches: the new use
case defined in the third year of the project, the requirements we implemented, those that were
cancelled, and those that were subject of major deviations.

2.1 Identified Use Cases
This section proposes the whole set of actors and use cases identified by the consortium. We
originally identified 3 actors and 16 use cases a�er the first requirements elicitation phase, and we
identified two new additional use cases in the second and third iteration, respectively. The new use
case UC 17, related to resource discovery, was already presented in deliverable D2.2, while the new
use case, UC 18, concerns the possibility for our main user to oversee the life-cycle of an application
a�er deployment and is detailed in Section 2.1.3.

2.1.1 Actors
Identified actors, as presented in deliverable D2.1 are the following. We also try provide a mapping
onto the roles foreseen in ISO/IEC/IEEE standard 12207 Systems and so�ware engineering —
So�ware life cycle processes:

Actor Brief description

Application Ops Expert (AOE) S/he is in charge of operating the application and of all the
aspects that refer to the deployment, execution, optimization
and monitoring of the application. This role can correspond to
the ISO/IEC/IEEE role in charge of Operation processes and
maintenance processes as they focus on the day-by-day
operation.

Resource Expert (RE) S/he is in charge of dealing with the different resources
required to deploy and execute the application. This role can
correspond to IEEE roles in charge of Infrastructure
management and Configuration management processes, given
they are supposed to allocate and manage resources and
configurations.

Quality Expert (QE) S/he is in charge of the quality of service both provided by the
execution infrastructure and required by the executing
application. This role can correspond to IEEE roles in charge of
Quality Management and Quality assurance processes because
they oversee the overall quality of deployed applications and
thus of the project itself.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 16
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

2.1.2 Use cases up to Year Two
The use cases already presented in previous deliverables are:

ID Title Reference
WP

UC1 Define Application Deployment Model WP3

UC2 Select Resources WP3

UC3 Generate IaC code WP4

UC4 Verify IaC WP4

UC5 Predict and Correct Bugs WP4

UC6 Execute Provisioning, Deployment and Configuration WP5

UC7 Start Application WP5

UC8 Monitor Runtime WP5

UC9 Identify Refactoring Options WP5

UC10 Execute Partial Redeployment WP5

UC11 Define IaC Bugs Taxonomy WP4

UC12 Map Resources and Optimisations WP3

UC13 Model Resources WP3

UC14 Estimate Quality Characteristics of Applications and Workload WP3

UC15 Statically Optimise Application and Deployment WP4

UC16 Build Runtime Images WP4

UC17 Platform Resource Discovery WP4

2.1.3 New Use Case
This section presents the new UC we added in the third year. This UC enables an AoE to browse his
deployments and manage their life-cycle. This UC is associated with the following requirements
expressed by UCs: UC8.R1, UC8.R8, Y2_R6.

UC18: Deployment Governance

Actors: Application Ops Expert (AoE)

Entry condition: An IDE-logged AoE needs to manage her application deployments

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 17
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Flow of events: ● AoE browses her application deployments in a dedicated
Deployment Governance view of the IDE. This view shows
every application (i.e. blueprint in runtime orchestrator
terminology) and their deployments.

● AoE navigates the tree of her application and
deployments and selects one.

● The browser shows details of selection.
● AoE can open in a Web browser the monitoring

dashboards associated with a selected deployment, and
browse their monitoring metrics.

● AoE can request two possible actions on selection:
resume or delete.

○ AoE may request to resume a deployment if a
failed one is selected. Resume can be done either
from an initial state or from the first failing node.

○ AoE can request to delete a deployment.
Blueprints not containing deployments can be
deleted as well.

● AoE can refresh the list of application deployments.

Exit condition: AoE ends the management of her application deployments.

Exceptions: Runtime orchestrator endpoint could not be correctly configured
in IDE. Orchestrator could not be accessible (VPN not set but
required, orchestrator down).

2.2 Completed requirements

2.2.1 Up to the second year
These are the requirements that were fully implemented by the end of the second year of the
project (month 24).

ID Brief description Notes

UC1.R1

The SODALITE Design-time
environment requires an API to
the application/Infrastructure

abstract pattern repository

Application and infrastructure abstract patterns can
be stored/retrieved to/from the repository

UC1.R2
DSL: specification of application

patterns and models
All modeling needs of the demonstrating use case

have been addressed

UC1.R3
Authoring of application abstract

models (part of abstract tuple)
AADM/RM for all the demonstrating user cases are

available

UC1.R4
Integration of Application

Developer Editor with SODALITE
SD

The specification of the application abstract models
takes place within the same IDE that the developer

uses for designing and implementing her
application-

UC2.R4 SLURM/Torque modelling Supported

UC2.R5 OpenStack modelling Supported

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 18
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

UC2.R6

Use context-aware search and
discovery, matchmaking and

reuse of cloud applications and
infrastructures

Supported

UC3.R1

SODALITE Runtime (SR) should
support Ansible playbooks and

TOSCA node definitions for
application deployment in

public cloud

We support EGI and AWS.

UC3.R2

SR should support Ansible
playbooks and TOSCA node
definitions for application

deployment in HPC environment

Both TORQUE and SLURM deployments are
supported

UC3.R5 Support for SODALITE DSL Supported

UC3.R6
Generation of correct, complete

and deployable IaC artifacts
Supported

UC3.R7
Generation of IaC which exploits

heterogeneous architectures
Supported

UC5.R2
Predict and Correct Security and

Privacy Defects in IaC Artifacts

Merged with a UC4 requirement. Detection of
common security/privacy smells in TOSCA and

Ansible are supported

UC6.R3

SR should support Ansible
playbooks and TOSCA node
definitions for application

deployment in private cloud

Private Openstack cloud supported

UC6.R4
SR plugin supporting Docker

Compose

SR does not support docker compose but, instead,
enables modelling and execution of docker hosts,
registries, volumes, networks, containers through

TOSCA topology models

UC7.R2 Smart application scheduling
Application requests are efficiently scheduled by

the Node Manager on fast GPUs or CPUs according
to application needs (e.g., SLA, current workload)

UC9.R2
Model Design (Adaptation)

Choices

The adaptation choices can be modeled using the
feature modeling and policy based adaptation

language

UC10.R3 Vertical Resource Scalability
Node Manager is able to vertically scale resources at

runtime according to applications’ needs

UC13.R1 Docker Modelling Container runtime is supported

UC13.R4 Ontology Serialization
The semantic model is compliant with OWL2

language

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 19
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

UC16.R1
Lightweight application base

images
Application Ops Expert defines the base image from

which to build the image

UC17.R4

The existing application designs
(or components) and

infrastructure should be able to
be dynamically discovered and

used when optimizing the
application

The optimization of application deployment due to
changes on the infrastructure or other NFRs is based

on the option discovery and reconfiguration
components for the currently deployed AADM.

Y2_R9
SODALITE should support the

runtime discovery of
components

Platform Discovery Service is currently able to
discover and prepare the node definition templates

for target infrastructures and store the Resource
Models (RM) into the semantic knowledge base. It
also supports updating the RMs when triggered by

monitoring or by any other component in the
pipeline.

2.2.2 Completed by Month 30
These are the requirements that were fully implemented by the deadline of this deliverable (month
30).

ID Brief description Notes

UC3.R3

SR should support Ansible
playbooks and TOSCA node
definitions for application

deployment on edge

Fully implemented.

UC3.R4

SR should support Ansible
playbooks and TOSCA node
definitions for application

deployment in fog

Fully implemented.

UC8.R2 Collect network metrics Additional metrics have been added.

UC8.R3
Collect host metrics (CPU,

memory)
Supported

UC8.R5 Monitoring levels
The API to allow application developers to hook
their exporters to the monitoring ecosystem has

been developed.

UC8.R9 Absorb Skydive metrics Skydive Metrics for networks are collected.

UC9.R10
Static Provisioning of

Heterogeneous Resources

The enforcement of TOSCA policies on scalability
has not been developed because scalability is
handled by the node manager and refactorer

UC9.R12
TOSCA inputs to SR (SODALITE

Runtime)
The reconfiguration component has been

integrated with the orchestrator and with the

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 20
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

knowledge base

UC9.R13
Dynamic Policy-based

restrictions on resource access
from the Edge

AlertManager integrated into the Edge.

UC10.R1
Create and Maintain Runtime

Models

We have improved the runtime model to support
the AADM at runtime. Validated with Snow and

Vehicle IoTrefactoring scenarios

UC10.R2 Horizontal Resource Scalability

Implementing TOSCA policies and triggers would
have meant duplicating the work of the refactoring
component. This feature is already covered by the

functionality of option discovery and reconfiguration
at runtime

UC13.R2 Kubernetes Modelling
Kubernetes Helm, Cluster and Node can be

modelled. Also Kubernetes objects and manifests
are modeled in AADM/RM

UC13.R5 TOSCA Compliance

Every DSL specification is TOSCA compliant. The
blueprints we generate are 100% TOSCA compliant.
We do not support the whole TOSCA specification as

there are some aspects that are not needed in our
cases and are not supported by our orchestrator

UC13.R6
Authoring of infrastructure

abstract models (part of abstract
tuple)

KB-driven content assistance for RM has been
implemented. RM DSL has been extended with

support for policy definitions

UC13.R7 IaaS Modelling
All needed infrastructures have been modeled.

Some have been automatically discovered

UC14.R1 Estimate Performance of Designs
Performance design for the latency test cases AI

(SnowUC) and MPI (ClinicalUC) benchmarks
estimated.

UC15.R1 Delivery of optimized application
Optimized containers for the TensorFlow training
(SnowUC) and the linear solver used in CodeAster

(ClinicalUC) provided.

UC15.R2
Optimize Application and

Deployment

We cover optimization for AI (SnowUC) and MPI
(ClinicalUC). Also, we show that the improvement on

inference, which could be used in VehicleIoT, is
marginal

Y2_R5
SODALITE should support

modeling of HPC workflows

Generalised Node types were provided, such that it
is now possible to model HPC job workflows in an

abstract way without targeting a specific HPC
resource manager.

Furthermore, the support of parallel deployment

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 21
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

execution implemented in SODALITE orchestrator
allows one to execute independent HPC jobs in

parallel

Y2_R7

SODALITE should provide easier
integration of components by

providing guidance and
suggestion of integration points
for a particular component type

The SODALITE IDE provides suggestions depending
on the requirements of a certain component

Y2_R13

SODALITE should automate the
definition of optimization

options for a target
infrastructure

The benchmarks and calculation of the
infrastructure performance model is automated and
containerized, and can be run on either PBS or Slurm

Y2_R14

SODALITE should support the
validation/monitoring/alerting
that the modelled/discovered

components are working
properly

Runtime behaviour of deployed application
components in target infrastructures is observed by

monitoring. AOEs can define rules for detecting
anomalous behaviour. Upon detection, alerts are
triggered and caught by Refactoring that applies

corrective actions

Y2_R16 SODALITE should support GDPR
awareness and compliance

We have implemented a policy-based
decision-making and enforcement mechanism in

the IaC verification. This verification is triggered at
runtime.

2.3 Requirements foreseen to be completed by month 33
These requirements are those on which we are still working at the time of writing this document
and that we plan to fully implement by the end of the development activities at month 33:

ID Brief description Notes

UC1.R6 Description of application and
standard build and run options

The description of build and run options is
achieved through the specification of TOSCA

interface operations using the Ansible DSL. The
work is ongoing for what concerns the possibility to

easily incorporate Ansible modules in the
SODALITE modeling framework

UC1.R7
Support for

microservice-oriented
architecture

The deployment of microservice-oriented
architecture developed artifacts will be supported

by M33

UC1.R10

Modeling language allowing
modeling of all the necessary

information to enable the
generation of deployable IaC

The integration of the Ansible DSL with the
knowledge base will be completed by M33

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 22
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

UC2.R1
DSL: specification of

optimization patterns and
models

Almost completed, few missing enhancements. The
results of this will be presented in D3.4

UC2.R2
Concretization of abstract

models into
deployment/configuration plans

The implementation is completed. It is to be
validated onto concrete scenarios from use cases

UC2.R3 OpenFaas modeling for
serverless computing actions

We have started addressing this requirement in the
second project year. We still need to define some
new OpenFaas container and experiment with it

UC3.R8
Reporting of errors in input
models which prevent IaC

generation

Basic support for misconfiguration detection added.
We are working on integrating with UC4.R1 and

UC4.R2

UC3.R9

Generation of IaC enabling
configuration of runtime

components (monitoring,
optimization and refactoring) as
well as of runtime management

policies (refactoring policies,
security policies, etc.).

Monitoring rules are implemented as node types
which are bound to infrastructural nodes and used
to support refactoring and runtime management

policies.

UC3.R10
Generation of IaC which exploits

serverless computing artifacts
(cloud functions)

We are extending the IaC builder and defining new
nodes in the IDE and semantic reasoner

UC3.R11 Orchestrator input
We are working on making the orchestrator be able

to deploy functions on OpenFaaS

UC4.R1
Verification of deployment
descriptions for syntax and

semantic errors

We are integrating the validation of IaC a�er the
generation in UC3, which is then called from the IaC

builder

UC4.R2

Verification of provisioning
workflows derived

from/specified in the
deployment model descriptions

We need to implement the M2M transformation
process for converting Ansible playbook workflows
into Petri-net models and apply control flow checks

UC5.R1
Predict and Correct

Performance Defects in
Deployment Models

The performance anomaly detection needs to be
integrated with the SODALITE runtime, and

evaluated with case studies

UC5.R3
Build an Infrastructure Code

Quality Framework
The IaC quality analysis tool from RADON will be

integrated. The control flow metrics will be added

UC6.R1
SODALITE Runtime supporting

various architectures
See UC2.R3

UC6.R2 Support for extension plugins See UC2.R3

UC6.R5 Heterogeneous infrastructure We are still working on OpenFaaS

UC8.R1 IDE Infrastructure dashboard Thorough integration tests are still pending

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 23
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

(monitoring, deployment,
reconfiguration)

UC8.R6 Monitoring infrastructures Integration with Vault is still pending

UC8.R7 End-to-end audit logging
Log-analysis is application specific. SODALITE

monitoring, orchestrator, and refactorer provide the
necessary information to implement it.

UC8.R8
Visualization of service

deployment and adaptations
Thorough integration tests are still needed

UC9.R1
Model Control/Optimization

Objectives (Performance,
Privacy, and Security)

The need to specify information related to security
and privacy is to be analysed.

UC9.R3
Find an Optimal Design Solution

Considering Control Objective
Tradeoffs

Need to experiment with case studies.

UC9.R4
Forecast Workload

(Multi-class/tenant)
Need to experiment with case studies.

UC9.R5
Forecast Infrastructure

Dynamics
Need to experiment with case studies.

UC9.R6
Predict Violations of Control

Objectives (Performance,
Security, and Privacy)

Need to experiment with case studies.

UC9.R9
Detect and Correct Defects at

Runtime
Need to be integrated with the SODALITE runtime.

UC9.R11
Elastic Provisioning of

Heterogeneous Resources
We need to work on the integration between Node

Manager and Deployment Refactoring.

UC11.R1
Create a Taxonomy of

Infrastructure Bugs and
Resolutions

Need to validate the misconfiguration taxonomy
with user surveys

UC12.R1
Select Optimisations for

Application and Infrastructure
targets

Few missing enhancements for the optimization DSL

UC13.R8
IaC deployment management

Modelling
The final release for the IaC blueprint builder is

planned for M33

UC13.R9
Description of the available

hardware

Platform Discovery Service already covers the
intended targeted infrastructures by describing and

storing the node definitions in the semantic
knowledge base. We plan to additionally show to the

user the definition of these nodes in the IDE to
complete this requirement

UC14.R2
Estimate Security Level of

Designs
Added a few more security and code smells for

Ansible. We need to identify more security smells.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 24
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

UC14.R3
Estimate Privacy Level of

Designs
Need to identify more privacy smells.

UC14.R4
Assess the Impact of a Design

Choice
Need to experiment with use cases.

UC17.R1

OpenFaaS must be managed
and utilized alongside other

types of conventional
infrastructure.

Still to be tested on FaaS functions

UC17.R2
Modelling must support
SLURM/Torque for HPC.

We are investigating the possibility to add the
definition of fast disks for HPC environments or

schedulers.

UC17.R3

Modelling must support,
besides container based

deployments, also Bare Metal
and VM abstractions such as

OpenStack.

All needed models are available. We just need to
compose a significant example.

Y2_R1

SODALITE should support
alternative distributed

deployment configurations for
field testing

Alternative distributed deployment configurations
will be possible thanks to the versioning support for

AADMs. Variants (i.e versions) of an existing AADM
can be authored, stored in the KB and deployed

using the IaC and Runtime layers

Y2_R2

SODALITE should support the
ability of running a reduced

pipeline for debugging or test
runs

This will be mostly implemented in the
orchestrator/IaC builder. Probably, this can be done

only in IDE/Reasoner.

Y2_R3

SODALITE should support a
more general implementation of
component connectors to cope

with changing workloads

We support and tested in AADM/RM (by M30) the Nifi
and data pipeline node types used in the demo (AWS

S3 and GridFTP). The remaining connectors:
S3-compatible storage (MinIO), Kafka, and the other

connectors requested by use case owners will be
developed, integrated and tested.

Y2_R4
SODALITE should support the

adaptation of connectors when
needed at runtime

This refers to the refactoring: when a redeployment of
an application component happens, the connector
should also be updated and adjusted such that the

updated component would still be connected. We are
testing it.

Y2_R6
SODALITE should support

restarting a workflow from a
failed component

Testing in concrete scenarios is still pending.

Y2_R8
SODALITE should support the

discovery of heterogeneous
resources at the Edge

Plan to support node-level annotations, additional
accelerator types.

Y2_R11
SODALITE should support

prebuilt optimized Singularity
More devices will be considered for experimentation

purposes

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 25
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

containers configuration during
the IaC generation so that the
container can be executed on
any infrastructure and can be

configured for different
optimization

Y2_R12

SODALITE should support
multi-arch container images.

These images also include edge
deployment; we could also have
multiple variants of containers

for different optimizations.

Implementation is currently in progress.

Y2_R15

SODALITE should support an
extension of deployment

refactoring for Cloud-to-Edge
deployment. In particular, it

should support deployment of
microservices for hybrid

multi-architecture clusters

Cloud-Edge hybrid application refactoring is
supported and validated. Multi-architecture

configurations are work in progress.

2.4 Cancelled requirements
These are the requirements we stated originally and that then we decided to cancel. The main
motivations behind the decision are summarized in the last column (Notes).

ID Brief description Notes

UC1.R5 IntelliJ IDEA IDE extension

SODALITE IDE uses XText technology that
supports the migration of the SODALITE

AADM/RM textual editors to IntelliJ. However,
the lack of resources prevents us from
addressing this requirement without

compromising others ranked higher. Besides,
this support does not ease the development of

the other IDE features for IntelliJ

UC1.R8
Abstractions and Mechanisms

for Enforcing Performance,
Security, and Privacy

The abstractions such as Load Balancer, Queue,
Policy Enforcement Points are implemented by

the case studies as necessary and are not part of
SODALITE stack.

UC1.R9

Augment Application Models,
IaC Models, and Infrastructure
Models for Predicting Control

Objectives

We use benchmarking for building performance
models. In case of the performance modeling for

deployment refactoring, the variants in the
deployment models are models represented

using the feature modeling (a separate model).
Thus, so far, there is no need for augmenting the

IaC models.

UC7.R1 Lightweight open source Application owners control and model their own

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 26
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Message oriented middleware
(MOM) for intra-service

communication

inter-component information flow and
middleware - this is an internal application

design feature

UC8.R4
Monitor Overprovisioning

(Performance), Security, and
Privacy Metrics

Other monitoring requirements include this
requirement

UC9.R7
Generate Application and
Infrastructure Adaptation

Plans

These requirements are not anymore relevant
for the refactorer. The refactorer generates a

new deployment model variant and sends it to
xOpera, which does the actual adaptation.

UC9.R8
Enact Application and

Infrastructure Adaptation
Plans

These requirements are no longer relevant for
the refactorer. The refactorer generates a new

deployment model variant and sends it to
xOpera, which does the actual adaptation.

UC13.R3 Istio Modelling It can be handled as a Helm chart.

Y2_R10

SODALITE should support
containers optimized for edge

resources and should allow users
to incorporate in these

containers the needed elements
(e.g., trained models) so that

they can be shipped to the edge

This requirement comprises porting to edge
devices primarily. Optimizations are only
secondary and beyond the scope of the

requirement. As such, it is out of the scope the
project.

Y2_R17 SODALITE should support data
privacy

Data privacy is managed by the different
applications directly in different specific ways.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 27
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

3 Architecture
The SODALITE architecture has continued to evolve during the third year of the project. Over time,
additional runtime environments have been supported, security has been improved, APIs have
been refactored, and some new components have been introduced. The most recent essential
updates are:

● Extended Security Pillar details;
● Revised interaction between components;
● Additional interfaces used by IDE (see figures for Modelling Layer and for IaC Layer).

These are reflected in the updated architecture figures and accompanying flow diagrams, in
particular: UC6, UC7, UC8, UC11, UC13, and UC17. A new sequence diagram has been added for the
new governance use case (UC18).
In order to clarify the role of the Security Pillar in the interaction with the other components, new
sequence diagrams have been added in this part, which is now presented in Section 3.2. These new
sequence diagrams help the reader understand how the off-the-shelf security components we have
incorporated in the architecture work when they are invoked by the other SODALITE components.
The Sections 3.3 to 3.5 present the other component and sequence diagrams that define the
SODALITE architecture. For the sake of completeness, also the parts that did not require any
change compared to D2.2 have been reported again here.

3.1 General architecture

Figure 1 - SODALITE general architecture.

The SODALITE platform is divided into three main layers. These layers are the Modelling Layer, the
Infrastructure as Code layer, and the Runtime layer. Figure 1 shows these layers together with their
relationships defined in terms of offered and used interfaces. The Modelling Layer exploits the
interfaces offered by the other two layers to offer to the end users (Application Ops Experts,
Resource Experts and Quality Experts) the needed information concerning the application
deployment configuration and the corresponding runtime. In turn, it offers to the other layers the
possibility to access the ontology and the application deployment model through the
SemanticReasoningAPI. The Infrastructure as Code Layer offers to the Modelling Layer the APIs for
preparing the deployment, for platform discovery, and for predicting defects. Finally, the Runtime
Layer offers the APIs for controlling the orchestration of an application deployment and for
monitoring the status of the system. In turn, this layer relies on the interfaces offered by the
underlying technologies with particular emphasis on (but not limited to) the ones shown in the
figure. The architecture is service based: each component exposes a REST interface to the others.
Integration is achieved through the offered interfaces.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 28
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

A more detailed view of the architecture is provided in Figure 2. This figure shows the three layers
with their main sub-components, and how data flows from one component to another. The
interaction of the sub-components is expanded upon in the following subsections.

Figure 2 - Main components of the SODALITE architecture.

3.2 Security Pillar
SODALITE provides tools and methods to authenticate and authorize actions on API endpoints
using open-source Identity Management and Secure Secret handling tools. While authorization is
required - a single SODALITE endpoint can manage different infrastructures belonging to different
domains. Apart from proper authentication and authorization of user actions, safe secret
management across the whole deployment pipeline is also required and ensured by SODALITE.
The main changes in the security related part, compared with D2.2 are the following:

● Security scenarios are generalized for all Use Cases and explained in detail in the Security
Pillar section of the document.

● Security schemes and interactions with security related components are removed from Use
Case diagrams and references to the scenarios are added (for simplification and
readability)

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 29
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

3.2.1 Security Pillar Toolkit
As a basis for authorization the OAuth 2.0 protocol was chosen, which is the de-facto industry
standard for authorization. As for IAM provider, SODALITE uses Keycloak - a popular and widely1

used open source tool which simplifies the creation of secure services with minimal coding for
authentication and authorization. It allows wide customization of options exceeding the needs of
SODALITE. Along with the basic authentication mechanism provided by Keycloak, SODALITE can
also support such features as 2-factor authentication and seamless integration with third party
identity providers like Google or GitHub. As a part of SODALITE stack, Keycloak is responsible for:

● Security configuration,
● Issuing a JSON Web Token (JWT),
● JSON Web Token validation.

Keycloak supports 2 standard mechanisms of token validation:
● Introspection endpoint,
● JSON Web Key Sets.

An Introspection mechanism (described in 4.5.4) provides a more secure way for validating tokens
as the token can be revoked before expiration. It is up to component developers to choose the
exact mechanism, but token introspection is encouraged to be used as the default one.
Apart from properly authorising user’s actions, other concerns are also addressed by the Security
Pillar - properly handling infrastructure secrets, like RSA keys, tokens, passwords. This involves 2
points to be addressed:

● Security of data in use,
● Security of data at rest.

The first point is mitigated by properly handling the secrets across the whole pipeline: not storing
unencrypted information, no logging for security critical parts, proper user management on virtual
containers that host SODALITE components. While SODALITE allows not storing any secrets at all
and providing them in inputs, storing secrets in a vault allows to automate workflow and
additionally ensure its safety. For addressing the second point e.g. security of data at rest Hashicorp
Vault was chosen, which is probably the most widely used open source tool for secret2

management.
Both Keycloak and Hashicorp Vault are deployed as a part of the SODALITE stack. Configuration of
the components is done on the fly, so that basically these two components are ready to use a�er
deployment. Admin credentials, roles, groups, clients, policies are created automatically, and
additional configuration can be done via API calls or component Web UIs.

3.2.2 IAM and Secrets Vault configuration for new Project Domain
One of the problems Security Pillar is designed to solve is proper authorization of access to
protected resources like models, blueprints, artifacts, secrets etc. A Project Domain entity was
introduced for that purpose, serving as a relationship entity between users and protected
resources. In IAM, Project Domain is designed as a set of roles, distributed across a set of groups,
each group representing a user type (Application Ops Experts, Resource Experts and Quality
Experts). Each role provides access to certain types of resources in a Project Domain, meaning that
only a certain group of users should be granted access to these resources. For example, a Resource
Expert would have the right to read and modify Resource Models in a certain Project Domain but
not Abstract Application Models, whereas an Application Operation Expert would have a right to
read Resource Models and modify Abstract Application Models. One user can belong to many

2 https://www.vaultproject.io/ Secure, store and tightly control access to tokens, passwords, certificates,
encryption keys for protecting secrets and other sensitive data using a UI, CLI, or HTTP API.

1 https://www.keycloak.org/ Open Source Identity and Access Management for Modern Applications and
Services

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 30
© Copyright Beneficiaries of the SODALITE Project

https://www.vaultproject.io/
https://www.keycloak.org/

Project No 825480.

Project Domains and thus have any number of roles assigned to him. IAM roles are presented as
private claims contained within JWT payload, signed by the IAM client private key.
Secrets Vault configuration of Project Domain requires creation of a Secret Store that contains
secrets used in this Project Domain, Vault Policies regulating access to the Secret Store and Vault
Roles that map Vault Policies to IAM roles.
For instance, Resource Expert role can be mapped into Secret write Policy and Application
Operation Expert role into Secret read Policy. Then Resource Expert adds secrets to the storage and
provides Application Operation Expert with a secret address that is later used in inputs for
Application Model Deployment. With this configuration an Application Operation Expert need not
deal directly with secret contents and a Resource Expert is able to seamlessly update secret values
when needed.

Figure 3 - Configuration of IAM and Secrets Vault.

Figure 3 describes configuration of IAM and Secrets Vault.
● A set of roles is created in IAM for a Project Domain (e.g. read Resource Models in Project

Domain, write Resource Models in Project Domain, read Abstract Application Models in
Project Domain, write Abstract Application Models in Project Domain).

● Roles are combined in Groups (e.g. Resource Expert in Project Domain and Application
Expert in Project Domain).

● Users are added to groups according to their roles.
● In Secrets Vault a separate Secret Storage is created for the project.
● Policies defining access rights for Secret Storage are created (e.g. read, write Secrets and

read Secrets).
● Roles representing a mapping entity between policies and claims in JWT token are defined

(e.g. Resource Expert - read, write Secrets, Application Expert - read Secrets).
● Project Domain is configured.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 31
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

3.2.3 Login
For issuing a JSON Web Token (JWT), Access Token OAuth 2.0 Resource Owner Password
Credentials Grant flow is used. Since the whole flow is confined inside SODALITE there is no
insecure exposure of credentials to the client. A JWT Access Token, once issued by IAM, is then used
across the whole SODALITE workflow. The primary client in the Login scenario is SODALITE IDE, but
IAM also allows a configuration for different clients, i.e. one set of rules can be applied to a user’s
logins from IDE and another set of rules for Automation components like Deployment Refactorer. In
order to enhance security and forbidding unauthorized calls to IAM Token Endpoint, each client has
a client secret assigned that is sent to IAM upon token creation to validate. User credentials and
client secret are provided to the IDE during configuration.

Figure 4 - Interaction between IDE and IAM.

Figure 4 describes interaction between IDE and IAM.
● IDE sends a HTTPS GET request to IAM Token Endpoint containing these credentials

together with IDE client id and client secret.
● IAM verifies validity of client id and client secret and validity of user login/password.
● If all credentials are valid a JSON Web Token is returned. This token contains user security

claims that grant access to different namespaces and Vault secrets.
● That JWT stored in IDE is used for authorising HTTPS requests to SODALITE services.
● If credentials are invalid a HTTP 401 error is returned.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 32
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

3.2.4 Check JWT token

Figure 5 - interaction between SODALITE endpoint and IAM.

Figure 5 describes interaction between SODALITE endpoint and IAM.
● If an API call requests access to some protected resource (model, blueprint, secret etc) and

has to be authorized it must be accompanied with JSON Web Token in the Authorization
header.

● API Endpoint ensures that the token provided is valid by sending an HTTPS GET request to
IAM Introspection Endpoint.

● IAM verifies that the signature is valid and the Token has not expired and returns a decoded
token as a result.

● SODALITE endpoint checks that the claims in the Token correspond to ones required for
accessing the protected resource.

● If the Token is invalid HTTP 401 error is returned.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 33
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

3.2.5 Save Secret in the Vault

Figure 6 - interaction between a SODALITE service and Secrets Vault.

Figure 6 describes interaction between a SODALITE service and Secrets Vault.
● In order to save a secret in Secret Vault an Endpoint Client must obtain a short-lived Secret

Vault Token first. In order to do this a Client must provide a JWT token and a name of the
Vault role that grants access to update the Secret Storage.

● Secret Vault ensures that the JWT provided is valid by sending an HTTPS GET request to
IAM Introspection Endpoint.

● If the JWT is valid, Secret Vault verifies that it contains claims that are required for the Vault
role requested.

● A short-lived Vault token is returned.
● Using this token Endpoint Client sends a HTTPS POST request containing secret address,

secret key-value authorized by a Vault token obtained earlier.
● Secret Vault ensures that the role associated with the Vault token has write privileges for

the Secret Storage where the secret is saved.
● A successful response is returned.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 34
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

3.2.6 Read Secret from the Vault

Figure 7 - interaction between a SODALITE service and Secret Vault.

Figure 7 describes interaction between a SODALITE service and Secret Vault.
● In order to read a secret from Secret Vault an Endpoint Client must obtain a short-lived

Secret Vault Token first. In order to do this a Client must provide a JWT token and a name of
the Vault role that grants access to read the Secret Storage.

● Secret Vault ensures that the JWT provided is valid by sending an HTTPS GET request to
IAM Introspection Endpoint.

● If the JWT is valid, Secret Vault verifies that it contains claims that are required for the Vault
role requested.

● A short-lived Vault token is returned.
● Using this token Endpoint Client sends a HTTPS GET request for the secret address

authorized by a Vault token obtained earlier.
● Secret Vault ensures that the role associated with the Vault token has read privileges for the

Secret Storage where the secret is stored.
● A response containing secret key-value is returned.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 35
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

3.3 Modelling Layer

Figure 8 - SODALITE Modelling Layer.

Figure 8 shows the internal architecture of the SODALITE Modelling Layer. The interfaces offered by
other components are also highlighted. A set of SODALITE domain ontologies, resulting from the
abstract modelling of the related domains (applications, infrastructure, performance optimisation
and deployment), are hosted in a SPARQL-served RDF Triplestore (GraphDB), constituting
SODALITE’s Semantic Knowledge Base. A dedicated middleware (Semantic Reasoner) enables the
exploitation of this repository, mediating for the population of data and the application of
rule-based Semantic Reasoning. Last but not least, an IDE provides a user interface with a DSL
editor, for the design of deployment models using knowledge retrieved from the Semantic
Reasoner. The IDE also communicates with other system APIs for the monitoring of the deployment
lifecycle.
The main changes introduced in the Modelling architecture compared with D2.2 report are the
following:

● IDE block: Monitoring API is composed of two lower level APIs, the GrafanaRegistry API and
MonitoringRules API. The IDE interacts with the GrafanaRegistry API, upon the deployment
of an AADM, to register the required monitoring dashboards associated with the deployed
application. The MonitoringRules API is required to register new monitoring rules authored
by the AoE in the IDE editor. IaCVerificationAPI has been removed from the interactions of
this layer, as it is used internally to the IaC Layer. Additionally, IDE interacts with the
Refactorer API for notifying to the Refactoring layer about new application deployments to
be taken care of.

3.3.1 Component descriptions
The descriptions in this subsection are essentially those from previous versions of the Architecture,
and are included here for completeness.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 36
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

3.3.1.1 SODALITE IDE
Functional Description:
The SODALITE IDE provides complete support for the authoring lifecycle of abstract application
deployment models (AADM in the following), Resource Models (RM), Optimization Models (OM) and
Ansible Models (AM).
The IDE enables Application Ops Experts (AOE in the following) to create AADMs for their
applications. The IDE also permits Resource Experts (RE) to create RMs that defines types of
infrastructure reusable resources, Quality Experts (QE) to define OMs that improves the runtime
performance of application components in target computing infrastructures, and AOEs to create
AMs that defines implementations for the operations of the interfaces adopted by infrastructure
resources and applications.
The IDE assists AOEs, REs and QEs in the textual authoring of the AADM (for these models graphical
authoring is also supported), RMs, OMs, and AMs, thanks to features such as: a) syntax highlighting,
b) autoformatting, c) autocompletion and quick fixes, d) syntactic and semantic validation/error
checking, e) scoping (cross-references), f) outlining, g) context-aware smart content-assistance, etc.
AOEs can describe in the AADM the application topology in terms of components and services, their
constraints and inter-component boundaries, and also express optimization requirements or
constraints (adopting the QE role) and Ansible implementations for interface operations. RE can
describe in the RM reusable types for infrastructure resources, their properties and attributes, the
capabilities they offer, the requirements they need, or the policies they adhere to.
The IDE checks the authored models for DSL conformance (syntactic validation) and relies on the
Semantic Reasoner for semantic validation (i.e., inconsistencies and/or recommendations). They
are presented to the user in the IDE for further inspection. Eventually, the user can refine/amend
the model based on them. Additionally, the IDE can request the Semantic Reasoner for existing
infrastructure resources that may fulfil requirements expressed in application components or in
other resources. Matching resources are presented to the user in the IDE.
Models can be stored into the Semantic KB. Complete CRUD operations on stored models are
supported from the IDE. Entities (e.g. application components, infrastructure resources) stored in
the KB can be shared with other users.
The IDE also supports the deployment of AADMs into the SODALITE Runtime Layer, the governance
of deployed applications, the creation of VM images from descriptors and the discovery of target
infrastructures as RMs, by using the IaC Layer.
Input:

● AADM: AOE knowledge, other reusable resources taken from the KB, references to OMs to
optimize concrete application components, references to AMs for implementations of
operations in interfaces,

● AADM inputs,
● RM: RM knowledge, other reusable resources taken from the KB,
● OM: OM knowledge,
● AM: AOE knowledge, Ansible modules,
● Image descriptors,

Output:
1. An AADM stored in the Semantic KB
2. An AADM deployed in the Runtime layer.
3. An AADM stored in the Semantic KB
4. A RM stored in the Semantic KB
5. A OM bound to AADM components for optimization
6. An AM to be bound to interface operations for AADM components or RM types

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 37
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

7. An image created and registered in the registry.
8. Discovered RMs for target infrastructure.

Programming languages/tools:
● SODALITE DSL: XText, EMF
● SODALITE IDE: Eclipse
● SODALITE IDE DSL Editor: XText, Sirius, Java

Dependencies:
1. Semantic Reasoner REST API
2. Semantic Reasoner query language and OWL notation (Turtle)
3. Semantic Reasoner response schema (JSON)
4. IaC Builder REST API
5. xOpera Orchestrator
6. AAI Keycloak REST API

Critical factors:
The latency accessing the SODALITE KB (and retrieving request responses) from the IDE may
prevent the IDE Editor from presenting real time recommendations, node targets, etc in the code
assistance without some delay. Similar delay could be present when saving models into the KB, or
when deploying AADM into the SODALITE Runtime Layer.
Models (AADM, RM) need to be serialized in the selected OWL Turtle notation before being
submitted to the Semantic KB for sharing/reutilization. Therefore, SODALITE DSL and KB Schema
must be semantically compatible.
Eclipse DSL technology (XText, EMF, Sirius) might not be fully compatible with a full-fledged
Web-based IDE.

3.3.1.2 Semantic Reasoner (Knowledge Base Service - KBS)
Functional Description:
The KBS is middleware facilitating the interaction with the semantic knowledge base (KB). In
particular, it provides an API to support the insertion and retrieval of knowledge to/from the KB,
and the application of rule-based semantic reasoning over the data stored in the KB.
Input:

1. Requests from the SODALITE IDE for the insertion of domain knowledge from Application
Ops Experts and Resource Experts (abstract and target resource types, resource patterns,
dependencies, inconsistencies, etc.).

2. Requests from the SODALITE IDE for knowledge retrieval in order to present appropriate
content in the IDE, to assure alignment with the DSL, etc.

3. Requests from the SODALITE IDE for the qualitative validation of user input (with the help
of semantic reasoning).

4. Requests from the SODALITE IDE for recommendations based on the user requirements.
5. Requests from the Platform Discovery Service for inserting of the discovered infrastructure

resources into KB.
6. Requests from the Refactoring Option Discoverer for discovering new nodes and resources.

Output:
1. Domain knowledge (abstract and target resource types, resource patterns, dependencies,

inconsistencies, etc.)
2. Detected inconsistencies in a given deployment model.
3. Generated recommendations based on user requirements.

Programming languages/tools:

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 38
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

● Semantic Reasoner API: Java, JAX-RS REST API
● Semantic Population Engine: Java, SPARQL query language
● Semantic Reasoning Engine: Java, SPARQL query language

Dependencies:
● Alignment with SODALITE IDE and its DSL
● Bug Predictor REST API
● AuthN/AuthZ REST API

Critical factors: KB Schema and SODALITE DSL must be semantically compatible.

3.3.1.3 Semantic Knowledge Base (KB)
Functional Description:
The KB is SODALITE’s semantic repository that hosts the models (ontologies) created in WP3. The
ontologies are populated with domain knowledge, i.e., abstract and target resource types, resource
patterns, deployment patterns, dependencies, inconsistencies, etc. This component interacts with
the KBS and offers capabilities for knowledge storage and manipulation.
Input:
Queries from the KBS for the insertion, update, deletion and retrieval of knowledge. More complex
queries also allow the execution of rule-based semantic reasoning and the inference of
recommendations and/or inconsistencies.
Output:
Requested domain knowledge, recommendations and inconsistencies.
Programming languages/tools:

1. Semantic triplestore with SPARQL support (GraphDB Free version).
2. SPARQL query language.

Dependencies: N/A
Critical factors: N/A

3.3.2 Use Case Sequence diagrams
The core activity associated with the modelling layer is the one associated with UC1 (Define
Application Deployment Model). However, it depends on the fact that the resources to be used for
deploying an application have been specified. For this reason, we focus first on UC13 – Model
Resources. For this document, only UC13 has been updated. The other UCs have been copied from
D2.2 for completeness. The interaction with IAM and Vault is abstracted in all sequence diagrams
and is occurring in accordance with the diagrams presented in Section 3.2.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 39
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

3.3.2.1 UC13: Model Resources

Figure 9 - Sequence Diagram for UC13.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 40
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 9 describes how the SODALITE components cooperate to implement the features offered as
part of UC13 - Model Resources. This use case is initiated by the Resource Expert in order to
populate and enrich the KB with new definitions of resource types. New knowledge could regard
abstract and/or specific resource types, relationships between known entities (e.g., dependencies
between resources), patterns and optimisation approaches. The whole process takes place with the
use of the SODALITE IDE and its DSL, assisted by the Semantic Reasoner for the qualitative
validation of input and the interaction with the KB.
As part of D2.3, one new interaction has been added to the UC with respect to the authoring of
Ansible scripts. Through the interfaces of a resource, scripts can be executed through the lifecycle
of the application (create, stop, start etc.) such as the initialization of a database. Within the
application deployment modelling process, the operations associated with application component
lifecycles (interfaces) can be modeled using the Ansible DSL editor of the IDE.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 41
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

3.3.2.2 UC1: Define Application Deployment Model

Figure 10 - Sequence diagram for UC1.

Figure 10 models the collaboration between the SODALITE components to implement the features
required in UC1. The Application Ops Expert (AOE) uses the SODALITE IDE in order to define an
application deployment model (ADM). The IDE is charged with presenting existing knowledge (e.g.
resource types), validating user DSL input by detecting inconsistencies, and generating

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 42
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

recommendations. The required interaction with the KB is served by the Semantic Reasoner
component. Finally, bugs and so�ware smells are detected by Bug Predictor. The use case output is
a valid ADM.

3.3.2.3 UC2: Select Resources

Figure 11 - Sequence diagram for UC2.

Figure 11 models the interaction between the SODALITE components when implementing the
features offered within UC2 - Select Resources. As soon as an application deployment model,
incorporating abstract resource types, has been defined, a selection of target resources needs to be
made and mapped to the abstract types, in order to enable the deployment process. This flow
includes the generation of suggestions regarding compatible resources and patterns - to which the

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 43
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

user is able to apply filters - and the validation of provided input, with the support of the Semantic
Reasoner and information stored in the Semantic Knowledge Base.

3.3.2.4 UC12: Map Resources and Optimisations

Figure 12 - Sequence diagram for UC12.

Figure 12 describes the interaction between the SODALITE components while implementing UC12 -
Map Resources and Optimisations. This use case describes the process of defining abstract
resource patterns by a Quality Expert (QE). Additionally, actual (target) resources can be mapped to
these patterns. To these ends, the SODALITE IDE retrieves and presents known resource types using
the Semantic Reasoner. Finally, the newly generated knowledge is stored in the Semantic
Knowledge Base and becomes available in related use cases, such as the aforementioned Select
Resources.
Moreover, based on the application and available resource types, different optimisations are
enabled for the QE to select from. The QE also has to enter the settings for any selected
optimisation. This is stored in the IaC Model Repository.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 44
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

3.3.2.5 UC14: Estimate Quality Characteristics of Applications and Workload
We do not include a separate sequence diagram for this use case as the Quality Expert in this case
performs the quality assessment experiments. In doing so, he/she exploits the whole SODALITE
framework to define the Application Deployment Model (UC1) associated with the experimental
prototypes used in the assessment:

● select the resources he/she wants to assess for performance (UC2),
● generate the IaC code (UC3) and possibly verify it (UC4),
● execute provisioning, deployment and configuration (UC6),
● start the prototype (UC7),
● run the monitor to collect data (UC8) and, finally,
● edit the resource and application models (UC13) and (UC1) to include additional

information about performance.
Alternatively, the Quality Expert could run the experiments in a simulated environment outside the
SODALITE framework and then exploit UC13 and UC1 to update the corresponding models in
SODALITE.

3.4 Infrastructure as Code Layer
The Infrastructure as Code Layer (IaC Layer) is the layer that connects the SODALITE Modelling
Layer functionalities to Runtime blueprint execution of the models in the SODALITE Runtime Layer.
It offers APIs and data to support the optimization, verification and validation process of both
Resource Models (RM) and Abstract Application Deployment Models (AADM). However, one of the
most important tasks of the IaC Layer is preparing a valid and deployable TOSCA blueprint.
During the last and third year of the project most of the components were released and several
were refactored and significantly improved. During the second year of the project Platform
Discovery Service had been added to the layer’s architecture, to expose a REST API which helps to
automate the tasks of the Resource Expert by creating a valid TOSCA platform resource model to be
stored into the SODALITE’s Knowledge Base. These RMs can then be used during the design of the
application deployment models (AADM).
In this period the Application Optimizer component exposing a REST API (MODAK) was updated and
further integrated into the pipeline enabling the SODALITE users to statically optimize the
application for a given target execution platform.
Both Automation of Application Optimisation on HPC and cloud systems requiring models used for
performance prediction have been improved. SODALITE prepares and uses these models for both
pre-deployment (static) performance optimization and runtime (dynamic) performance
optimization.
During the third year of the project IAM (Identity and Access Management) API and Secret Vault API
were fully integrated into the IaC Layer and used by the components that have to protect secrets
stored by the user, such as Platform Discovery Service and IaC Blueprint Builder.
During development in the third year of the project a part of the architecture was redesigned and is
shown here in Figure 13.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 45
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 13 - Infrastructure as Code Layer.

3.4.1 Component Descriptions
The descriptions in this subsection are essentially those from previous versions of the Architecture,
and are included here for completeness.

3.4.1.1 Abstract Model Parser
Functional Description: The Abstract Model Parser is the central component for the preparation of
the deployable IaC blueprint and related Actuation scripts.
Its main function is to abstract the parsing of the abstract deployment model from building the
deployable IaC. It feeds the IaC Builder component with all the data provided by the App Ops
Expert and needed for the selection and building of IaC Nodes (Blueprint) and preparation of the
Actuation scripts (playbooks).
Input: Takes input from the SODALITE IDE as the reference to the abstract application deployment
model. It is based on the POLIMI extensive knowledge of modelling and parsing UML deployment
diagrams into IaC blueprints, e.g., TOSCA deployment blueprint.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 46
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

The component allows the SODALITE IDE to:
● start the parsing process,
● cancel the parsing process at any given time,
● return resulting build time information to the user in a human readable form.

Output: Produces the output for the user based on the process of parsing Abstract Application
Deployment Model (AADM).
Programming languages/tools: Java
Dependencies: This component interacts with different components enabling the user to parse the
abstract application deployment model and build IaC code through REST API calls to other
SODALITE components:

● IaC Blueprint Builder
● IaC Resources Model

Critical factors: This component should be able to take input from the SODALITE IDE through a web
API allowing the user to cancel the parsing process at any given time.

3.4.1.2 IaC Blueprint Builder
Functional Description: This component internally produces the IaC blueprint based on the input
provided in the abstract application deployment model passed to the Abstract Model Parser. It
flattens the application model topology in a node list and for any given node:

● returns the best matching IaC node definition from the IaC Resources Model Repository,
● sets provided parameters,
● internally builds relations to other nodes.

For any selected node it then checks the artefacts to be deployed on that node.
In case the abstract model holds information about the artefact source and the source is available,
it triggers the call to the Application Optimiser component in order to try to start the compilation
and optimisation, defined in the model. This component integrates with MODAK which updates the
optimized images that are deployed.
At the end of the process of creation of the IaC and the building of Artefact images, it saves the
resulting IaC in the IaC Repository and returns the build time information in a human readable
form.
Input: Abstract application deployment model, IaC Resources Model
Output: IaC blueprint (TOSCA) with actuation scripts (Ansible playbooks). Returns information
about the IaC building process in human readable form to be shown to the user.
Programming languages/tools: Python
Dependencies:

● SODALITE IDE
● Abstract Model Parser
● IaC Resources Model
● Application Optimiser
● IaC Repository

Critical factors: This component should be able to take input from the SODALITE IDE through a web
API.

3.4.1.3 IaC Model Repository
Functional Description: IaC Model Repository is a part of the MODAK component and contains:

● Performance Model of an infrastructure based on benchmarks.
● Performance Model of an application based on scaling runs done in the past.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 47
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

● Mapping of optimisations and applications and their suitability for a particular
infrastructure.

● Optimisation recipe for a particular deployment. This contains selected optimisations by
the user for an application and infrastructure target.

Input: Application type, node type
Output: Performance model and optimization recipe
Programming languages/tools: Python/Mysql
Dependencies: IaC Model Repository interacts with the SODALITE IDE and contains the
Performance Model of infrastructure and application (offline analysis).
Critical factors: N/A

3.4.1.4 Runtime Image Builder
Functional Description: Runtime Image Builder builds the runtime images used by the orchestrator
at application deployment
Input: Target architecture and artifact definition
Output: A runtime image equipped with configuration, artifact executable binary, configuration
metadata, possibly monitoring artifact. The image is released to the Image Registry for
deployment.
Programming languages/tools: Python
Dependencies: Concrete Image Builder
Critical factors: N/A

3.4.1.5 Concrete Image Builder
Functional Description: Implementation of concrete image builder for the execution platform to
handle specifics regarding configuration, deployment, monitoring.
As it seems there can be significant differences between the images built targeting
HPC/Cloud/Kubernetes, Concrete Image Builder implements an adapter pattern to satisfy and
bridge the different approaches for targeting the above-mentioned execution platforms.
The built image could also include monitoring artefacts allowing the post deploy configuration by
the Orchestrator.
Input: Runtime Image Builder configuration and definition of binary runtime.
Output: Runtime Image
Programming languages/tools: Yaml (Docker, Kompose, HPC container technology), Python
Dependencies: Runtime Image Builder
Critical factors: N/A

3.4.1.6 Application Optimiser - MODAK
Functional Description: The MODAK package, a so�ware-defined optimisation framework for
containerised AI and MPI-parallel applications considered within the SODALITE use cases, is the
SODALITE component responsible for enabling the static optimisation of applications before
deployment.
Input: MODAK requires the following inputs:

1. Job submission options for batch schedulers such as SLURM and TORQUE;
2. Application configuration such as application name, run and build commands;
3. Optimisation DSL with the specification of the target hardware, so�ware libraries, and

optimisations to encode. Also contains inputs for auto-tuning and auto-scaling.
An Image Registry contains MODAK optimised containers while performance models, optimisation
rules and constraints are stored and retrieved from the IaC Model Repository. Singularity container

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 48
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

technology was chosen to provide a portable and reproducible runtime for the application
deployment, due to better performance and native support for HPC.
Output: MODAK produces a job script (for batch submission) and an optimised container that can
be used for application deployment.
Programming languages/tools: Python, Ruby, CRESTA Autotuning framework
Dependencies: IaC Model Repository, Runtime Image Builder, Execution Platform, Platform
Discovery Service
Critical factors: Overhead time for optimisation of an application. Validation of optimisation may
require support from the execution platform.

3.4.1.7 IaC Verifier
Functional Description: This component coordinates the processes of verification of the syntax and
semantic of the deployment model artfacts, namely TOSCA models and Ansible playbooks.
Input:

● IaC models
● Correctness criteria such as well-structuredness and soundness

Output:
● Verification Errors (for invalid artifacts)
● Verification Summary (for valid artifacts)

Programming languages/tools: Java and Python
Dependencies:

● SODALITE IDE
● Verification Model Builder
● Topology Verifier
● Provisioning Workflow Verifier

Critical factors: N/A

3.4.1.8 Verification Model Builder
Functional Description: This component builds the models required to verify the IaC models, for
example, a petri net representation for the workflow in Ansible playbooks.
Input: IaC models
Output: Verification Models
Programming languages/tools: Java and Python
Dependencies:

● Topology Verifier
Critical factors: N/A

3.4.1.9 Topology Verifier
Functional Description: This component verifies the deployment topology of the application against
given correctness criteria.
Input:

● Representation of TOSCA Models
● Correctness criteria

Output:
● Topology Verification Errors (for an invalid topology)
● Topology Verification Summary (for a valid topology)

Programming languages/tools: Java and Python

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 49
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Dependencies:
● IaC Verifier

Critical factors: N/A

3.4.1.10 Provisioning Workflow Verifier
Functional Description: This component verifies the provisioning workflow in a given Ansible
playbook against given correctness criteria and application specific constraints.
Input:

● Formal Model of the Provisioning Workflow
● Correctness criteria
● Application specific constraints

Output:
● Topology Verification Errors (for an invalid provisioning workflow)
● Topology Verification Summary (for a valid provisioning workflow)

Programming languages/tools: Java and Python
Dependencies:

● IaC Verifier
Critical factors: N/A

3.4.1.11 Bug Predictor and Fixer
Functional Description: This component is responsible for predicting bugs/smells in IaC models,
suggesting corrections or fixes for the detected bugs/smells, and correcting the bugs/smells
applying the fix selected by the Application Ops Expert.
Input: Abstract IaC models
Output: Bugs/Smells, Fixes
Programming languages/tools: Java and Python
Dependencies:

● SODALITE IDE
● Semantic Knowledge Base
● Predictive Model Builder
● IaC Quality Assessor

Critical factors: N/A

3.4.1.12 Predictive Model Builder
Functional Description: This component builds the models that can be used to detect bugs/smells in
IaC models and suggest corrections. The models can include rule-based models, semantic models,
and data-driven (machine learning and deep learning).
Input:

● IaC artifacts
● Bug/Smell and resolution knowledge (ontology and rules)
● IaC datasets
● IaC metrics

Output:
● Ontological Predictive Models
● Data-Driven Predictive Model
● Rule-based Models

Programming languages/tools: Java and Python

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 50
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Dependencies:
● Bug Predictor and Fixer
● Semantic Knowledge Base

Critical factors: N/A

3.4.1.13 IaC Quality Assessor
Functional Description: This component can calculate different quality metrics for IaC artifacts.
Input: IaC artifacts
Output: IaC quality metrics
Programming languages/tools: Java and Python
Dependencies:

● Bug Predictor and Fixer
Critical factors: N/A

3.4.1.14 Platform Discovery Service
Functional Description: Platform Discovery Service takes the data needed as input platform such as
platform namespace, project and credentials to access the platform to create a usable TOSCA
Resource Definition from a target. This model can be stored in the SODALITE KB and reused by the
AOE at Application Deployment design time.
Input: Target Namespace, Project, Platform Access Credentials
Output: TOSCA resource definition template
Programming languages/tools: Python, TOSCA, Ansible
Dependencies:

● Target platforms
● IAM Service API
● Secrets Vault API
● Semantic Knowledge Base

Critical factors: N/A

3.4.2 Use Case Sequence diagrams
For this document, only UC17 has been updated. The other UCs have been copied from D2.2 for
completeness. The interaction with IAM and Vault is abstracted in all sequence diagrams and is
occurring in accordance with the diagrams presented in Section 3.2.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 51
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

3.4.2.1 UC3: Generate IaC

Figure 14 - Sequence diagram for UC3 Generate IaC.

Figure 14 describes the updated Sequence Diagram showing interaction between the SODALITE
components while in the process of generating IaC Code. The prerequisites for the IaC blueprint to
be built are a well-defined abstract application deployment model and definition of artifacts, be it
source (scripts) or executable binaries with configuration, to be deployed on the infrastructure.
Application Ops Expert initiates the generation of the IaC blueprint through SODALITE IDE with the
reference to the model definition. Abstract Model Parser parses the model and replaces the abstract
node definitions with IaC node definition from the IaC Resource Model which is built into the IaC
Blueprint Builder. Each step is tracked and recorded for subsequent IaC changes reflecting the
model. For each node, artifacts definitions with source code are then optimally compiled by the
Application Optimiser component into an executable binary and optimized images targeting a
specific infrastructure platform. IaC Blueprint Builder represents a central point of the AADM to IaC
transformation. A�er providing optimal artifacts from the Application Optimiser it creates and
registers the TOSCA blueprint with the Orchestrator returning a blueprint registration token. The
build-time results are then returned back to the Application Ops Expert through a registered
blueprint token provided.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 52
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

3.4.2.2 UC4: Verify IaC

Figure 15 - Sequence diagram for UC4 Verify IaC.

Figure 15 describes the interaction between the SODALITE components while implementing UC4 -
Verify IaC. Application Ops Expert provides the abstract IaC modelling artifacts to the IaC Verifier to
formally verify the artifacts with respect to given correctness criteria. Both the deployment model
and the provisioning workflow of the application need to be verified. The provisioning workflow
includes the provisioning and configuring of the infrastructure, deployment of the application
components on the infrastructure, and configuring the infrastructure and the application
components. Verification Model Builder builds the formal verification models (e.g., Petri net

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 53
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

models). Topology Verifier verifies the topology whereas the Provisioning Workflow Verifier verifies
the provisioning workflow. The verification results are returned back to the Application Ops Expert.

3.4.2.3 UC5: Predict and Correct Bugs

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 54
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 16 - Sequence diagram for UC5 Predict and Correct Bugs.

Figure 16 describes the interaction between the SODALITE components while implementing UC5 -
Predict and Correct Bugs. Application Ops Expert submits the abstract IaC models via SODALITE IDE
to Bug Predictor and Fixer for detecting the bugs in the application topology and the provisioning
workflow. Bug Predictor and Fixer uses Predictive Model Builder to parse the received IaC models,
and builds the predictive models required for predicting the bugs in them. The bugs are
anti-patterns, design smells, and code smells for security, privacy and performance. The bug
prediction results are shown in SODALITE IDE. Application Ops Expert can select one or more bugs,
request potential fixes for each selected bug, and choose and apply the desired fixes. The Semantic
Knowledge Base contains the knowledge required to predict bugs and to recommend
corrections/fixes. Bug Predictor and Fixer can also assess the quality of concrete IaC artifacts in
terms of IaC quality metrics and use the IaC metrics to predict the defect-proneness indices in the
IaC artifacts.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 55
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

3.4.2.4 UC11: Define IaC Bugs Taxonomy

Figure 17 - Sequence diagram for UC11 Define IaC Bugs Taxonomy.

Figure 17 describes the interaction between the SODALITE components while implementing UC11 -
Define IaC Bugs Taxonomy. Quality experts identify the types of smells, misconfigurations, and
bugs in IaC, and build the taxonomies. The ontological reasoning rules required for detecting
smells and suggesting fixes for smells are also defined. Finally, the ontological reasoning rules are
deployed in Bug Predictor and Fixer.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 56
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

3.4.2.5 UC15: Statically Optimise Application and Deployment

Figure 18 - Sequence diagram for UC15.

Figure 18 describes the interaction between the SODALITE components while implementing UC15 -
Statically Optimise Application and Deployment. This use case describes the process for optimising
the application and deployment statically. Static optimisation refers to the optimisation before
deployment of the application. The input for this use case is the optimisation recipe created as part
of the Map Resources and Optimisation (WP3) use case and the output is an optimised application
executable or a container. The optimisation recipe stored in the IaC Model repository is retrieved
and extracted. For all the tasks in the recipe, the tasks are optimised for different targets based on
the optimisations selected. An optimisation report is made at the end of this process.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 57
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

3.4.2.6 UC16: Build Runtime images

Figure 19 - Sequence diagram for UC16.

Figure 19 - describes the interaction between the SODALITE components while implementing UC16
- Build Runtime Images. This is an internal process initiated in UC3 - Generate IaC. Runtime Image
Builder builds a runtime image based on tuple definition of target architecture and artifact list for
that architecture. Runtime Image Builder activates a specific Concrete Image Builder based on
target architecture to prepare a runtime image of the artifact and its configuration with added
SODALITE monitoring artifact. The built runtime image is then stored in the Image Registry for later
deployment. The build-time information is returned to the calling component IaC Blueprint Builder.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 58
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

3.4.2.7 UC17: Platform Discovery Service

Figure 20 - Sequence diagram for UC17 Platform Discovery Service.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 59
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 20 describes the interaction between the SODALITE components while implementing UC17 -
Platform Discovery Service. The process is initiated by Resource Expert (RE) by selecting the project
domain to which a specific set of platform resources will be added. The data about defined project
domains is retrieved by Semantic Reasoner API which, based on user privileges defined in the
access token, checks the validity and the list of project domains the user is authorized to approach
(described in detail in Section 3.2.4). For every platform added to the project domain the RE adds a
specific set of values needed by the Platform Discovery Service to execute the platform discovery
(described in detail in Section 3.2.5). The set of values includes a namespace definition for the
created resource, project domain, and platform access keys. The data is stored in a central Secret
Vault and accessible by the Platform Discovery Service providing a valid access token for retrieving
data from the Secrets Vault (described in detail in Section 3.2.6). The user can manually initiate the
discovery of the infrastructure resources through IDE. Once the Platform Discovery Service has
access to the platform it executes the discovery using platform specific tools that return a JSON
description of the resources. In the next step Platform Discovery Service executes a JSON to TOSCA
service template transformation and returns the results to the caller as TOSCA service template
definition of the platform or stored into the Knowledge Base, depending on the call parameters.

3.5 Runtime Layer

Figure 21 - Runtime Layer.

The Runtime Layer of SODALITE (see Figure 21) is in charge of the deployment of SODALITE
applications into heterogeneous infrastructures, its monitoring and the refactoring of the
deployment in response to violations in the application goals. It is composed of the following main
blocks:

● Orchestrator - receives the topology description of the application to be deployed or
re-deployed, as a blueprint expressed in TOSCA, and deploys the application components
on the target infrastructure.

● Monitoring - monitors the application components and the infrastructure where they are
deployed to be used by Refactoring and other interested SODALITE actors.

● Refactoring - proposes a new application deployment topology to fulfil the application
goals. When it modifies the model in the Semantic Reasoner, it calls the Deployment

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 60
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Preparation API, which triggers the generation of a new blueprint that arrives to the
Orchestrator to initiate the redeployment.

The main changes introduced in the runtime architecture w.r.t. the version reported in D2.2 are the
following:

● Orchestration block: different supported HPC schedulers are explicitly labeled within the
PBS/Slurm driver and target infrastructure boxes. The orchestrator also uses the
ExporterAPI to set up and configure monitoring exporters delivered within the application
components and target infrastructures.

● Monitoring block: two new APIs are included, namely the GrafanaRegistryAPI, provided by
the dashboard and consumed by the IDE, and the AlertingRuleAPI, provided by the new
component RuleFileServer and consumed by the IDE. Upon an application deployment, the
IDE registers it for new monitoring dashboard generation using the GrafanaRegistryAPI.
AoEs can also register newly created monitoring rules by using the AlertingRuleAPI. Other
internal connections among monitoring components have been fixed. Some monitoring
exporters (e.g. HPC Exporter) must now use IAM Introspection API and SecretVaultAPI to
obtain the user’s secrets required to get access to target infrastructures to monitor. WP4
Platform Discovery Service (PDS) also plays a role in the Runtime Layer: Refactoring
registers itself in PDS to receive notifications on infrastructure updates. Edge node label
monitoring (a specific implementation for Monitoring/Alerting) notifies PDS on detected
changes in the Edge infrastructure.

● Refactoring block: Deployment Refactoring consumes monitoring metrics through the
Monitoring API.

The interaction between the IDE and the runtime components have been updated with the usage of
the RefactoringAPI, GrafanaRegistryAPI and AlertingRuleAPI. See Section 3.5.1.3 for a description of
those IDE-Runtime interactions.

3.5.1 Component Descriptions
There is one additional monitoring component (Rule File Server) not included in the Runtime
architecture presented in D2.2, which is included in this version. The remaining component
descriptions are copied from D2.2 for completeness.

3.5.1.1 xOpera REST API
Functional Description: The xOpera Orchestrator manages the lifecycle of an application deployed
in heterogeneous infrastructures. xOpera REST API is deployed as a dockerized component that
encapsulates xOpera orchestrator and provides additional functionalities to the API clients, such as
TOSCA blueprint registration, deployment session handling, blueprint and session persistence with
the possibility to share registered TOSCA blueprints among different users and additional
deployment governance endpoints.
Input: TOSCA/Ansible Blueprint Deployment plan
Output: Configuration of target infrastructures and applications
Programming languages/tools: Python, Ansible
Dependencies:

● Target infrastructures: HPC (PBS/SLURM), OpenStack, AWS, Kubernetes, OpenFaaS
● IAM, Secrets Vault
● Exporters

Critical factors: Each orchestrator has its own limitations. This results in limitations concerning the
possibility to apply certain actions on the managed application.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 61
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

3.5.1.2 Monitoring + Exporters
Functional Description: Gathers metrics from the heterogeneous infrastructure and application
execution, provided by standard and specialized exporters, allowing query and aggregation on
them.
Input: Heterogeneous infrastructure
Output: Metrics
Programming languages/tools: Prometheus, Prometheus query language and API; Go for exporters
Dependencies: Probes or exporters that monitor the target infrastructure components and report
back metrics .
Critical factors: Certain metrics could be difficult to get in some infrastructures.

3.5.1.3 Monitoring Dashboard
Functional Description: Offers visual, customizable, specialized views that render different
monitoring facets of target infrastructures or applications.
Input: Monitoring metrics
Output: Monitoring views
Programming languages/tools: Grafana
Dependencies: Monitoring metrics collected from querying the monitoring component.
Critical factors: Certain metrics could be difficult to get in some infrastructures.

3.5.1.4 Alert Manager
Functional Description: This component is notified by the monitoring component upon the
detection of monitoring violations specified in registered alert rules. The manager conducts an
analysis of the accompanying metrics and reports associated alerts to the interested registered
subscribers.
Input: Monitoring alert + associated metrics
Output: Alert notification sent to subscribers
Programming languages/tools: Python, Flask, Gunicorn
Dependencies: Registration in monitoring as Alert Manager, SODALITE subscribers registered.
Critical factors: N/A.

3.5.1.5 Deployment Refactorer
Functional Description: This component refactors the deployment model of an application in
response to violations in the application goals. The goals are monitored at runtime by collecting
the necessary metrics. A machine learning based predictive model is used to predict the
performance of multiple alternative deployment model variants, and to select a suitable
deployment model variant for the application (the new deployment model) if the current
deployment model leads to performance violations. The new deployment model is deployed
through Orchestrator. The new refactoring options can also be discovered at runtime, enabling
deriving new deployment model variants. The Refactorer can also detect various anomalies of a
given application deployment at runtime using machine learning based models, and generate the
alerts, enabling executing the corrective actions. Moreover, the Refactorer can react to the alerts
and events generated by the monitoring layer by adapting the current application deployment as
necessary. The adaptation policy can be specified as an ECA (Event-Condition-Action) policy.
Input:

● IaC topology model
● Refactoring option model
● Application goals

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 62
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

● QoS metrics
Output: (Topology) Adaptation Plan or New Deployment Model (in TOSCA and IaC Scripts)
Programming languages/tools: Java
Dependencies:

● Refactoring Option Discoverer
● Node Manager
● Deployment Preparation API (through IaC Blueprint Builder)
● Orchestrator
● Semantic Reasoner
● Monitoring Agent

Critical factors: N/A
This component addresses the following application goals:

● satisfy performance (latency and throughput),
● minimize cost/price,
● minimize resource usage;

And uses these data retrieved from the monitoring infrastructure:
● application workload, latency, and throughput,
● cost/price,
● infrastructure resource usage metrics such as CPU, Memory, and Network,
● other metrics such as energy metrics, and HPC-specific metrics.

If data is not sufficient or of good quality, the accuracy and effectiveness of the
refactoring/adaptation decisions may decrease. Thus, as necessary, the Refactorer uses the
existing techniques , for handling uncertainty and variable quality of the monitored data.3 4

3.5.1.6 Node Manager
Functional Description: This component is responsible for managing node resources including the
overall node capacity/throughput while maintaining the node goals assigned by the Deployment
Refactorer. The node goals are monitored at runtime by collecting the necessary metrics. The Node
Manager oversees multiple concurrent applications. The Node Manager schedules incoming
requests for execution on GPUs and CPUs exploiting custom heuristics and continuously scales CPU
cores using control-theory according to applications’ needs.
Input:

● TOSCA blueprint with applications description and goals
● QoS metrics
● Available resources

Output:
● Load balancing on heterogeneous resources
● Resource Allocation

Programming languages/tools: Python, Kubernetes
Dependencies:

● Deployment Refactorer
● Orchestrator

4 Esfahani, Naeem, Ehsan Kouroshfar, and Sam Malek. "Taming uncertainty in self-adaptive
so�ware." Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of so�ware engineering. 2011.

3 Arcelli, Davide, Vittorio Cortellessa, and Catia Trubiani. "Performance-based so�ware model
refactoring in fuzzy contexts." International Conference on Fundamental Approaches to So�ware
Engineering. Springer, Berlin, Heidelberg, 2015.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 63
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

● Semantic Reasoner
● Monitoring Agent

Critical factors: N/A

3.5.1.7 Refactoring Option Discoverer
Functional Description: This component is responsible for discovering new refactoring options and
changes to existing refactoring options. To select refactoring options, it uses various matchmaking
criteria based on the properties, capabilities, requirements, usage policies of resources. For
example, a new node that may offer a specific security policy (e.g., the node is placed only on a
data center in a given set of regions) or scaling policy (e.g., the node can be autoscaled up to 5
instances).
Input: Search (matchmaking) criteria
Output: Refactoring options
Programming languages/tools: Java
Dependencies:

● Deployment Refactorer
● Monitoring Agent
● Semantic Reasoner

Critical factors: N/A

3.5.1.8 Rule File Server
Functional Description: This component receives requests for registering new alerting rules (or
deregistering them) from external clients (e.g. the IDE). Upon reception, rules are
registered/unregistered within the main monitoring engine.
Input: A monitoring rule description, compliant with the monitoring rule language.
Output: A registered monitoring rule (within the main monitoring engine).
Programming languages/tools: REST API
Dependencies: Rules File Server needs the main monitoring engine, through its MonitoringAPI.
Critical factors: Certain anomalous runtime behavior of deployed application components could
not be detected if the corresponding monitoring rules are not registered.

3.5.2 Sequence Diagrams
For this document, UC6, UC7, UC8 and UC18 have been updated. The other UCs have been copied
from D2.2 for completeness. The interaction with IAM and Vault is abstracted in all sequence
diagrams and is occurring in accordance with the diagrams presented in Section 3.2.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 64
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

3.5.2.1 UC6: Execute Provisioning, Deployment and Configuration

Figure 22 - Sequence diagram for UC6.

Figure 22 describes the interaction between the SODALITE components while implementing the
UC6 - Execute Provisioning, Deployment and Configuration. This sequence diagram has been
extended from the D2.2 version to include post-deployment interactions, between the IDE and the
Refactorer and Monitoring Dashboard Registry, respectively.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 65
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Once an AADM (abstract application deployment model) has been defined, an Application Ops
Expert initiates the deployment via the SODALITE IDE. The SODALITE IDE provides the AADM to the
IaC Blueprint Builder, which in turn creates a CSAR (Cloud Service Archive - an archive that contains
TOSCA blueprints and metadata, and the deployment and implementation artifacts) and passes it
to the Orchestrator. The Orchestrator saves the CSAR and returns a Blueprint ID to the IaC Blueprint
Builder, which is further passed back to SODALITE IDE. At this point, the deployment is registered in
the Orchestrator system and can be later referred through its Blueprint ID, e.g. for the deployment
execution or deployment updates.
Once the Blueprint ID is received by the SODALITE IDE, it directly requests the Orchestrator to start
the deployment and receives a Session ID to monitor the deployment progress. Optionally, a set of
inputs can be passed along the request to parameterise the deployment. Then, the Orchestrator
starts the deployment by executing the deployment workflow specified in the blueprint.
For each execution platform specified in the blueprint, its resources are instantiated, and the
application components are deployed on top of them. As such:

● In IaaS clouds, before the deployment of the application components, the virtual resources
must be first provisioned. For that, the Orchestrator issues provision requests to the IaaS
resource manager (e.g. OpenStack, AWS EC2) to create a set of virtual machines (VMs) and
other resources that the application demands, e.g. security group, network and storage.
The Lightweight Runtime Environment (LRE) is then installed on VMs as a runtime for the
execution of the application components. Upon the installation, the Orchestrator
configures and deploys application components, pulling them from specified image
registries.

● Kubernetes automates the resource provisioning and the application deployment by
exposing an endpoint, through which the deployment and configuration descriptions are
passed. Hence, the Orchestrator submits these descriptions to Kubernetes, which
configures and deploys the application components, pulled from specified image registries.

● When resource management systems are selected (e.g. Torque or Slurm), the Orchestrator
pre-uploads the artifacts (e.g. pulling required container images) and the job description
script to the user workspace (e.g. home directory of the user) on login (front-end) nodes
and then submits the job to the batch system. UC7 describes the start of applications,
deployed using one of the resource management systems.

At this point, the deployment of the heterogeneous application components is performed on
different resources, and the application is started. Optionally, the configuration of a monitoring
platform can be additionally performed if such mechanism is requested to the Orchestrator. First,
for each allocated Execution Platform (EP), one or more different Monitoring Exporters (i.e.
monitoring probes) are registered and configured within the monitoring agent. Then, a similar
exporter registration and configuration process is conducted for each application component that
requires a specialized exporter.
A�er a successful deployment, the IDE requests the monitoring dashboard registry to generate the
dashboards associated with the new deployed application. The AOE user (taken from JWT token) is
registered to the dashboard and user’s permissions set to restrict the access to her dashboards.
Then, the IDE notifies Refactoring about the new deployment, so that it gets registered for further
refactoring surveillance.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 66
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

3.5.2.2 UC7: Start Batch Application

Figure 23 - Sequence diagram for UC7.

Figure 23 describes the interaction between the SODALITE components while implementing the
UC7 - Start a batch application. UC7 accompanies UC6 to describe in detail the start of batch
applications in HPC infrastructures, i.e. applications that take an input, process it and give the
results, unlike the services (e.g. web servers, REST APIs), which start right a�er deployment and run
continuously. Furthermore, these applications can be deployed once and executed several times

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 67
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

with different inputs. This sequence diagram has been simplified from D2.2, removing the IDE as a
participant in the process and focusing on the deployment process that takes place in the Runtime
Layer.
When a job is submitted to the batch system, it does not start immediately, but it is firstly enqueued
to a specified or default queue. It starts once the job's turn comes in the queue a�er compute
resources become available, and it leaves the queue for its execution. It may take some time
depending on the resources' availability in the queue.
During the deployment (or redeployment), when the resource management system is selected as
an execution platform, the Orchestrator submits a job and monitors its state, whether it is running
or finished. When the job is finished, the Orchestrator determines whether the execution was
successful or failed. The deployment terminates when the execution is failed, otherwise the
deployment continues with the next application component. In the case of HPC scheduling, the
precise start time for job execution (a�er being dequeued) is unpredictable, as it depends on the
eventual availability of the requested resources. Therefore, job monitoring must start at queue
time, as it is requested by the orchestrator to the Monitoring System, which, at this point, starts
collecting statistics describing the application job status.
From then on, the Orchestrator can initiate the collection of metrics for its purposes (e.g., to check
application job health).

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 68
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

3.5.2.3 UC8: Monitor Runtime

Figure 24 - Updated sequence diagram for UC8

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 69
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 24 describes the interaction between the SODALITE components while implementing the
UC8 - Monitor Runtime. This sequence diagram has been updated from D2.2 to emphasize the
restricted (IAM-meditated) access to the monitoring dashboards only associated with AOE's
deployed applications.

The Monitor component collects system statistics on an ongoing basis. On each host (whether
physical or virtual) there are one or more exporters (i.e. probes) that interact with the Monitoring
component and report back to it some standard (but also specialized) statistics about their target,
which could be either the execution platform or the application component. Statistics are usually
collected on each target by reading various counters and registers that hold updated system
statistics.
Periodically, Monitoring collects the statistics from all the registered exporters and stores them into
its internal database for further inspection, upon the reception of queries requested from external
clients. High level reports on standard statistics are available to be consulted by AOEs in the
Monitoring Dashboard that is accessible from the SODALITE IDE. AOEs can only access the
dashboard associated with their application deployments.
Some monitoring alerts could also be triggered by the Monitoring Alert Manager to the Deployment
Refactor, for those situations where a condition (defined within a dynamic alerting rule) holds on
concrete monitoring stats.
In such cases, the Deployment Refactor component could make placement decisions based on the
resource usage. In other cases it may be desirable to inspect some specific non-standard
monitoring figures in order to isolate the cause of some observed anomaly. In this case, the AOE
can request such a report by using the Monitoring Dashboard component, which, in turn, creates
and issues to the Monitoring component all the queries required to create the report. Using the
results to those queries returned by Monitoring, the dashboard presents the aggregated report to
the AOE.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 70
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

3.5.2.4 UC9: Identify Refactoring Options

Figure 25 - Sequence diagram for UC9.

Figure 25 describes the interaction between the SODALITE components while implementing UC9 -
Identify Refactoring Options. The Deployment Refactorer is initialized with the IaC models for the
initial deployment, the initial set of refactoring options, and application goals. It uses the Node
Managers of each of the nodes in the application topology to manage the resources in those nodes.
The node resource management is based on the node level goals derived from the application
goals. Via the Monitoring Alert Manager, the Deployment Refactorer is eventually notified when any
of the defined application goals are violated. Upon such circumstances, the Deployment Refactorer

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 71
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

tries to find a new deployment model for the application that can resolve the detected application
goal violations.
If a new deployment model cannot be found, the Application Ops Expert is alerted. The new
deployment is enacted via the Deployment Preparation API. The Deployment Refactorer also may
reassign node-level goals as necessary. The Refactoring Option Discoverer can find the new
refactoring options as well as the changes to the existing refactoring options. It uses the Semantic
Reasoner for this purpose. Both the Deployment Refactorer and the Node Manager use the
Monitoring Agent to collect data to determine the impacts of the refactoring decisions and to
update the predictive models used for refactoring option selection and node resource allocation,
respectively.

3.5.2.5 UC10: Execute Partial Redeployment

Figure 26 - Sequence diagram for UC10.

Figure 26 describes the interaction between the SODALITE components while implementing UC10 -
Execute Partial Redeployment. A redeployment (or deployment updates) is an act of modifying
application topology or application parameters at runtime. The partial redeployment refers to

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 72
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

updates of only affected components of an application, i.e. those components that require
modifications during the runtime of the application as opposed to the modification of the whole
application topology. As an example, a certain application component may need the updates of the
container image or it may require scaling to improve the performance. Another example might be
the changes in application topologies, when new components are introduced or old components
need to be removed.
In SODALITE, partial redeployment can be triggered via the SODALITE IDE when the Application Ops
Expert manually changes an AADM or he/she confirms one of the Refactoring Options suggested by
Refactorer as described in UC9. Refactorer may also be configured to automatically request a
redeployment if it detects any Refactoring Options at runtime. In both cases, a reference to a
particular Blueprint ID, which is obtained a�er execution of UC6, should be used.
When a redeployment is triggered manually by the Application Ops Expert, the SODALITE IDE
requests IaC Blueprint Builder to register a new CSAR from the updated AADM and to redeploy the
blueprint in the Orchestrator. A�er that, SODALITE IDE directly requests the Orchestrator to start
the deployment updates and it receives a Session ID to monitor the redeployment progress.
Alternatively, when a redeployment is triggered automatically by Refactorer, it creates a CSAR,
which reflects the updated deployment, and updates the blueprint in the Orchestrator. Similarly, it
then directly requests the Orchestrator to start the deployment updates and receives a Session ID
to monitor the redeployment progress.
At this point, the deployment updates are executed by the Orchestrator. The Orchestrator derives
the difference between current and updated deployments and applies adaptation actions until the
current state of deployment becomes the updated state. Such adaptation actions are performed on
the Execution Platforms used for the redeployment.
If the selected platform is IaaS Cloud or Kubernetes, the actions that might be performed are the
following:

● any form of scaling (in/out/up/down),
● migration to another Execution Platform,
● deployment of the new application components introduced by the Application Ops Expert

and removal of current components.

It should be noted that Kubernetes, being itself an orchestration platform, is enforcing partial
redeployment.
For resource management systems (common in HPC), these Execution Platforms lack flexibility in
scaling at runtime, hence the scaling actions are not present as possible adaptation actions;
however, all the other actions can be executed as well (migration, deployment and removal of
components).

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 73
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

3.5.2.6 UC18: Deployment Governance

Figure 27 - Sequence diagram for UC18.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 74
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Figure 27 describes the interaction between the SODALITE components while implementing the
UC18 - Deployment Governance. This new UC describes the management, mediated through the
IDE, of AoE’s application deployments. A logged AoE can browse her deployed applications
retrieved from the runtime Orchestrator. For every AoE’s application, or blueprint in Orchestrator
terminology, there could be one or more deployments. AoEs can select an application (blueprint) or
one of its deployments and browse its details. In the case of a deployment, AoEs can additionally
access the associated monitoring dashboards to browse runtime monitoring metrics (see UC8).
Several actions are supported depending on the selection (e.g. either a blueprint or a deployment).
In case of selecting a failed deployment, it can be resumed (from the first failing node or from an
initial state, depending on the clean_state boolean parameter). Any selection can also be deleted.
In case of blueprints, deletion is only possible when it does not own any deployment.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 75
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

4 Evaluation plan and KPI accomplishment
The SODALITE evaluation plan is articulated around the following actions:

● The operationalization and measurement of the technical KPIs defined in the Grant
Agreement, in order to demonstrate the incremental accomplishment of such KPIs and take
recovery actions where needed.

● The evaluation of the SODALITE platform carried out by the case study owners through the
adoption of the SODALITE approach. This evaluation is continuous and has led, through the
project execution, to the identification of new requirements and use cases that have
extended the SODALITE functionality.

● The quality control processes put in place during the project to achieve higher quality code.
In the following sections we elaborate on the above aspects.

4.1 Operationalization and measurement of KPIs
The technical KPIs defined in the Grant Agreement had the objective of providing a tool to assess
the level of accomplishment of the project goals at key milestones in the project. In Deliverable
D2.2, we have defined the operationalization of such KPIs, that is, the metrics and the
measurement process through which such KPIs can be measured. The first measures have been
taken at M24 as planned and concerned both those metrics that were planned to be assessed at
that time and also those that were planned for a following project milestone. The results of this
measurement process have been reported in Deliverable D6.3 and are summarized in Table 1, taken
from D6.3.

Table 1 - Summary of technical KPI status at M24.

KPI Description/Target Due by M24 status

KPI 1.1

This KPI refers to the capability of
the modelling layer to support the
so far defined use cases in terms
of abstract application and
infrastructure structures.
Target: 25% coverage

M24 66% coverage

KPI 1.2

The KPI refers to performance
patterns found in the demonstrating
use case. We use the use case
requirements to map this and
calculate the lower bound.
Target: 80% coverage

M33
Clinical UC: 80% coverage, Snow: 92%
coverage, Vehicle IoT: Not relevant

KPI 1.3

The KPI refers to execution
constraints on compute, memory,
network and storage and
possibilities found in the
demonstrating use case. We use
the use case requirements to map
this and calculate the lower bound
Target: 80% coverage

M33
Clinical UC: 66% coverage, Snow: 83%
coverage, Vehicle IoT: TBM

KPI 2.1
When AOE exploit abstractions in
their application code, we expect
an increase in performance of 15%

M30
Clinical UC: 3% speedup increase, Snow:
10% speedup increase

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 76
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Target: 15% speedup increase

KPI 2.2

The KPI refers to when the
deployment of an application is
dynamically optimized with respect
to changing workloads to improve
resource usage, and to reduce SLA
violations and component failures.
Target: 20% improvement over
the baseline

M30

Node Manager: 96% reduction in SLA
violations; 15% reduction in allocated
resources
Deployment refactoring: 96-99% accuracy
and efficiency of performance prediction for
deployment alternatives

KPI 3.1

 The focus will be on development
of deployment descriptions, not
application code.
Target: 10% improvement over
the baseline

M24 28% improvement for a TOSCA expert

KPI 3.2

 This reduction is specifically
concerning resource management.
Target: 30% improvement over
the baseline

M24 19% improvement for a TOSCA expert

KPI 4.1

Integration of the SODALITE
system allows for combined use of
all its components.
Target: 95% component
compatibility

M33
100% component compatibility, specific
features to be improved integration-wise

KPI 5.1

LOC released as open source /
LOC produced by SODALITE to
build the platform.
Target: 80% open source code

M36 100% open source code

KPI 5.2

The meaning is the following:
given the subset of the
SODALITE code that is built
extending an existing open
source project, 60% of this code
is donated back to the existing
project. To check the fulfillment
of this KPI we need to identify
the reference projects we
extend.
Target: 60% of upstreamed code

M36
96% of code submitted to upstream
projects has been merged, a further 3% has
been submitted but not yet merged.

As can be seen from the table, almost all KPI targets were met already at M24. In Deliverable D6.4
we will present the results of the new evaluation campaign that is being conducted in the last part
of the project, in order to assess the KPIs at M33 and M36. Given KPIs KPI 2.1 and 2.2 are the only
KPIs planned to be evaluated at month 30, while deliverable D6.4 will come later, we want to
anticipate some values here. As for KPI 2.1, we have measured a speedup of 18% for Clinical UC
and a speedup of 20% with Snow UC. We can also confirm the values already presented for KPI 2.2,

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 77
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

that is, 96% reduction in SLA violations for Node Manager and 15% reduction in allocated
resources. As for deployment refactoring: 96-99% accuracy and efficiency of performance
prediction for deployment alternatives.

As part of the development of this deliverable, we have reconsidered the evaluation process and
the metrics defined at M24 in D2.2 and we have concluded that they are still fully applicable and
adequate for the M33 and M36 evaluation.

Moreover, considering the stronger integration of the design time and runtime elements of the
SODALITE platform, we have decided to extend the scope of the controlled experiments used for
assessing KPI 3.1 (Reduction in so�ware and/or application development time and cost) and KPI
3.2 (Reduction in so�ware management (redeployment, reconfiguration) time and cost). While in
the initial experiments involving external users we limited the usage of the SODALITE framework
only to the IDE, leaving the usage of the entire platform only to the case study owners, this time we
plan to involve also a limited number of external users in the exploitation of the whole framework.
More specifically:

For what concerns KPI 3.1, external users and TOSCA experts will be asked to model the AADM of a
simple application, to generate the TOSCA code themselves by running the IaC blueprint builder
and to execute this code through the orchestrator to test its correctness (in the initial experiment,
they were only focusing on the modeling activity and the SODALITE team was checking the
correctness of their work offline).

For what concerns KPI 3.2, we will ask our subjects to generate a new version of an AADM, to
experiment with the versioning features and to perform the generation and execution steps as
described above.

4.2 Evaluation of the platform by the case study owners
An important element of the SODALITE evaluation approach is based on the usage of the platform
by the case study owners. Table 2 identifies the features (UML UCs) exploited by the case studies in
the first project year (in gray) and those adopted in the second project year (in green). Moreover, it
draws the plan for the last year of the project. In this new year, a new UML UC has been defined
(UC18) and this will be exploited by all case studies. Moreover, all other UCs will be experimented
again, given that they have been extended and consolidated in the last period.

Table 2 - Coverage of the SODALITE UML use cases by the demonstrating use cases by M36

Use Case

Virtual

clinical trial SNOW Vehicle IoT

Testbed

Providers

UC1 Define Application Deployment Model (WP3)

UC2 Select Resources (WP3)

UC3 Generate IaC code (WP4)

UC4 Verify IaC (WP4)

UC5 Predict and Correct Bugs (WP4)

UC6 Execute Provisioning, Deployment and

Configuration (WP5)

UC7 Start Application (WP5)

UC8 Monitor Runtime (WP5)

UC9 Identify Refactoring Options (WP5)

UC10 Execute Partial Redeployment (WP5)

UC11 Define IaC Bugs Taxonomy (WP4)

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 78
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

UC12 Map Resources and Optimisations (WP3)

UC13 Model Resources (WP3)

UC14 Estimate Quality Characteristics of Applications

and Workload (WP3)

UC15 Statically Optimize Application and Deployment

(WP4)

UC16 Build Runtime images (WP4)

UC17 Platform Resource Discovery (WP4)

UC18 Deployment Governance (WP5)

Y1 Y2 Y3

4.3 Code quality control processes
As discussed in Deliverables D2.4 and D2.2, the SODALITE consortium has put in place a quite
rigorous process to control the release of new code, the execution of code analysis aimed at
discovering major problems in the source code, the automatic execution of tests, the generation of
the Docker images associated to each component and their upload on Docker Hub. We have
additionally strengthened the quality control process by paying specific attention to security, which
is clearly a key element of any piece of modern, interconnected so�ware. Therefore, the
consortium has adopted security as one of its core quality metrics.

4.3.1 Tools
The consortium has adopted a number of tools to ensure the production of secure and high quality
so�ware, in addition to those which are detailed in deliverable D2.2 Section 5.2. Previously, the
consortium adopted Sonar and sonarcloud.io for the continuous assessment of code quality. Sonar
includes a number of tools, only some of which are relevant to security. These include:

● “Security hotspots”, which examines code for common security issues and identifies code
that must be checked manually to determine if there is a security issue.

● “Code smells”, which examines code for common anti-patterns and identifies code which
needs further analysis and/or specific corrections to improve the security, organization or
quality of the code.

However, Sonar does not cover the full security lifecycle. It is focused solely on the quality of the
code.
The consortium has chosen to package all of the components in Docker containers. The Docker
ecosystem introduces additional security considerations, such as:

● So�ware installed in the container to support the Consortium's component may be out of
date. When the consortium builds a Docker container, certain supporting so�ware must be
added to the container. This dependency so�ware may have security issues and
subsequently fix the issues. If the consortium does not update the containers it builds, they
will continue to use the out of date dependency so�ware and therefore have security
vulnerabilities.

● So�ware in the base container may be out of date. If this happens, the Consortium's
container may have a security vulnerability that is not part of the Consortium's code. The
consortium is not responsible for fixing the issues in the base container. However, the
consortium is responsible for selecting an appropriate base container. The security of the
base container is an important decision in this selection.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 79
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

The consortium has sought so�ware to detect these issues as well as other security issues. A�er a
search process, Snyk (snyk.io) has been selected as a monitoring and alerting tool for security
issues. The consortium has been using three primary features of Snyk:

● "Open Source Security", which scans the dependencies of the components and alerts the
consortium when one is known to have security issues.

● "Container security", which scans Docker containers and determines if any of the base
containers has security vulnerabilities.

● "Static analysis", which examines component code and looks for common security issues.
When Snyk finds such an issue, it alerts the consortium. Then the consortium can then apply
corrective measures.

4.3.2 Possible Metrics
Snyk's results come in the form of a number of issues and, for each issue, a severity rating. For
example, a particular component might have 1 Critical Severity issue, 3 High Severity issues, 10
Medium Severity Issues, and 2 Low Severity issues. In industry, it is common to follow "Application
Security Policies", which define the policies and procedures used for checking for and remediating
security issues. These will define when security checks must be run, what delay is acceptable in
remediating them and when new releases of so�ware must be made in order to update
dependencies.
For so�ware written internally, Application Security Policies o�en consider the type and severity of
the issue. Additionally, when dependency so�ware is involved, policies will consider if an update to
the dependency is available.
The consortium has not yet selected metrics to use with Snyk. The consortium intends to select
metrics similar to the following examples. However, these are examples and the final selected
metrics may be different:

● Zero critical and high severity issues in consortium-written code at the time when a
component is released, unless a written explanation is provided explaining why the issue
cannot be resolved.

● Zero critical and high severity issues in dependencies when a component is released,
unless no updated version of the dependency is available or a written explanation is
provided explaining why the issue cannot be resolved.

● Re-release of released containers within 7 days if a critical security issue is found and within
14 days if a high severity issue is found in dependencies included in the container.

● 50% reduction in issues of all severities.
● Use of base containers with the fewest possible critical and high severity issues.

4.3.3 Open Issues
The consortium has not completed the integration of Snyk. The following issues are still "open" and
must be resolved before Snyk is fully integrated:

● Integration of Snyk with Jenkins. The consortium wishes to integrate Snyk with the existing
Jenkins pipeline used in the project to support the continuous integration and deployment
activities and to favor automation. However, on one hand Snyk produces a list of security
issues, some of which the component authors would not be able to resolve if the problem is
detected on an updated so�ware dependency. On the other hand, Jenkins can only
produce a binary result (i.e., component accepted or not accepted). Thus, the consortium
must:

○ Determine if it is possible for Snyk to return only issues the component authors are
able to correct.

○ Determine if Snyk can ignore known issues that are not currently resolved.
● Set metrics for which test results from Snyk are and are not acceptable.
● Selection of metrics. The consortium must finalize the metrics to be used with Snyk.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 80
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

● Creation of an Application Security Policy.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 81
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

5 Conclusions
This document presented the last update of the work done on requirements, architecture, and
KPIs. This is the final version of the series and collects all the work done, with special emphasis on
what has been done over the last (third) year of the project. The document collects all requirements
and summarizes their status (those fully implemented, those cancelled, and those for which we
managed some exceptions). It also provides an up-to-date version of the architecture of the
SODALITE environment, with special emphasis on the work done on authentication and
authorization and on the changes implemented in the last year of the project. The architecture
described here complies with Milestone MS7 (Final Architecture). Finally, the section on KPIs recalls
all the KPIs we promised and checked, updates the evaluation plan, and discusses the work done
in this last year on the automated assessment of the security of produced Docker images.

D2.3 - Requirements, KPIs, evaluation plan and architecture - Final version Page 82
© Copyright Beneficiaries of the SODALITE Project

