
SOftware Defined AppLication Infrastructures managemenT and Engineering

Full release of application
and infrastructure

performance models
D3.4

HPE
31.10.2021

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 825480.

Project No 825480.

Deliverable data

Deliverable D3.4 Full release of application and infrastructure performance models

Authors
Alfio Lazzaro, HPE
Nina Mujkanovic, HPE
Tiziano Müller, HPE

Reviewers Kamil Tokmakov, USTUTT
Jesús Gorroñogoitia, ATOS

Dissemination
level Public

History of
changes

Name Change Date

Alfio Lazzaro Initial version
created 14.9.2021

All First dra� 1.10.2021

All Results update 22.10.2021

Alfio Lazzaro (HPE) Sent for internal
review 26.10.2021

All Final version 29.10.2021

Acknowledgement
The work described in this document has been conducted within the Research & Innovation action
SODALITE (project no. 825480), started in February 2019, and co-funded by the European
Commission under the Information and Communication Technologies (ICT) theme of the H2020
framework programme (H2020-ICT-16-2018: So�ware Technologies)

D3.4 Full release of application and infrastructure performance models - Public Page 1
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Executive Summary
Applying optimisations specifically targeting the hardware is crucial to get performance for
compute intensive applications. However, it breaks performance portability, such that a user is
faced with different optimised implementations of the same application. In this report, we present
a procedure to manage optimised applications within containers to specifically address the goal of
achieving performance on specific target hardware. This deliverable describes the full release of the
application and infrastructure performance models for the static optimisations, ie. optimisations
applied before the deployment of the application. In particular, it focuses on the progress of the
work with respect to the first-year activity, as reported in the deliverable D3.3 [2]. Additionally, we
update on the development of the SODALITE application optimiser called MODAK (Model
Optimised Deployment of Applications in Containers), which was already introduced in the
deliverable D4.2 [3]. A performance model for the parallel applications is also presented. This
model is used within MODAK for predicting the optimal number of parallel processes when running
a MPI parallel application for a best usage of the compute resources. Finally, we present results of
the optimisations and handling of the optimised containers via MODAK for DL training and
MPI-based applications taken from the SODALITE use cases.
For future activity up to the end of the project, we will further extend MODAK functionalities, for
example, we plan to introduce an automatic mechanism for efficient data management.
Furthermore, we will improve the integration of MODAK with the other SODALITE components. This
activity will be reported in the future deliverable D4.3.

D3.4 Full release of application and infrastructure performance models - Public Page 2
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Table of Contents

Glossary 6

1 Introduction 7
1.1 Deliverable goal 7
 1.2 Overall objectives of the project 7
 1.3 Work performed from the beginning of the project 9
1.4 Progress beyond the state of the art 9
1.5 Structure of the document 9

2 Static Performance Optimisation 10
2.1 Optimisation DSL 12
2.2 The performance model 13
2.3 MODAK infrastructure 13

3 Performance results 14
3.1 Snow UC 14
3.2 Clinical UC 18

4 Concluding Remarks 20

References 21

Appendix A - MODAK DSL Schema Definition 22

D3.4 Full release of application and infrastructure performance models - Public Page 3
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

List of Figures
Figure 1. Registration of the optimised containers via MODAK.
Figure 2. Selection of the optimised containers via MODAK.
Figure 3. Results on the performance model extraction and verification.

List of Tables
Table 1. Execution time of the SnowUC DL baseline and optimised containers.
Table 2. Execution time of the ClinicalUC Code-Aster baseline and optimised containers.

D3.4 Full release of application and infrastructure performance models - Public Page 4
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Glossary

Acronym Explanation

ABI Application Binary Interface

AI Artificial Intelligence

API Application Programming Interface

CNN Convolution Neural Network

CPU Central Processing Unit

DL Deep Learning

DSL Domain Specific Language

GPU Graphic Processing Unit

HPC High Performance Computing

HPCM HPC Container Maker

IaC Infrastructure as Code

IDE Integrated Development Environment

IO Input/Output

KB Knowledge Base

ML Machine Learning

MPI Message Passing Interface

MODAK Model Optimised Deployment of Applications in Containers

QE Quality Expert

SSD Solid-State Drive

D3.4 Full release of application and infrastructure performance models - Public Page 5
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

1 Introduction
So�ware application developers and users are now targeting a wide range of diverse computing
platforms, such as on-premises supercomputers and clouds with heterogeneous node
architectures. Container technology has grown popular as a bridge between these heterogeneous
environments due to ease of use, portability, scalability, and the advent of user-friendly runtimes.
Containers provide a straightforward way to share scientific applications and reproduce research
on either cloud or High Performance Computing (HPC) systems. Compute intensive applications,
such as Deep Learning (DL) training that use HPC systems, have specific requirements for
specialised execution environments including computing accelerators, high speed interconnects,
and fast memory and storage. Even if containers provide both flexibility and portability, we still
need applications to optimally use and benefit from these diverse resources. For example, DL
training frameworks require target-specific libraries and drivers to be configured.
In the context of HPC infrastructures, with diverse hardware and so�ware dependencies and
libraries, building or selecting an optimised container for deploying DL-based components is
crucial. The same concepts apply for Message Passing Interface (MPI) applications, where the
applications have to efficiently use the network to get performance and parallel scalability. To
address these issues, SODALITE developed a set of application performance models and
infrastructure, based on optimised containers. The aim is to take a performance-centric view of the
applications and infrastructure and model them to enable performance decisions to be made.
Performance can be optimised before deployment (static optimisations) or at runtime (dynamic
optimisations). This deliverable describes the full version of the application and infrastructure
performance models, specifically for the static optimisations. Dynamic optimisations progresses
were reported in the deliverable D5.2 [1], published at the end of the second year of the project,
and the final description will be reported in the deliverable D5.3 (end of the project). This
deliverable focuses on the progress for the static optimisations with respect to what was reported
in the initial prototype for application and infrastructure performance models presented in the
deliverable D3.3 [2] (first year) and the update of the application optimiser component described in
the deliverable D4.2 [3] (second year).

1.1 Deliverable goal
This deliverable describes the full version of the application and infrastructure performance
models for the static optimisations. It describes the solution adopted, as well as its application on
the SODALITE use-cases. In particular, it focuses on the progress of the work with respect to the
first-year activity, as reported in the deliverable D3.3 [2]. Additionally, we update on the
development of the SODALITE application optimiser called MODAK (Model Optimised Deployment
of Applications in Containers), which was already introduced in the deliverable D4.2 [3].

 1.2 Overall objectives of the project
The main project goals along with the WP3 perspective on them are summarised as follows:

● O1 objective: The key objective is to provide code (application), resource (infrastructure) and
execution semantic abstractions, injected with infrastructure performance abstractions, to
ensure maximum performance of the so-abstracted application and infrastructure when
concretized on specific infrastructure. We build the abstractions as extensions of standardised
approaches, aiming at both machine and human readability.
WP3 perspective: We developed a Domain Specific Language (DSL) for the application
optimisation to enable performance decisions to be made before the deployment of an
application. The DSL specifies the application optimisations related to the hardware (eg.
CPU and GPU specific hardware instructions) and so�ware (eg. optimised libraries). The
optimisations are used to build optimised application containers, as documented in this

D3.4 Full release of application and infrastructure performance models - Public Page 6
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

deliverable, so that they can execute faster with respect to unoptimised baseline
containers. The Modelling layer enables the design of the optimisations DSL in the IDE .1

● O2 objective: To increase the performance of the deployed so�ware on target platforms
through static optimisation, using the infrastructure performance patterns abstractions and
through dynamic optimisation, using the predictive deployment refactoring approach,
building on the run-time available data from the application and the platform.
WP3 perspective: Static optimisations are supported through the MODAK, the SODALITE
Application Optimiser introduced in the deliverable D4.2 [3], whose latest developments
are discussed in this deliverable.

● O3 objective: To reduce the cost of so�ware development, deployment, management and
adaptation or reconfiguration in the modern infrastructures, using abstraction of the typical
components (e.g., compute, storage, network) and combining them with non-functional
requirements, allowing for an application to target multiple concrete infrastructures.
WP3 perspective: The application and hardware model abstraction used to build
optimised application containers, together with the application performance model is only
based on infrastructure capabilities (accelerators, available runtime environments) and the
application itself. It can therefore be shared and reused via MODAK across different
infrastructures without rebuilding the containers.

● O4 objective: To address abstractions, technologies, targeted applications, and
infrastructures holistically, allowing for flexible, reusable, and long term supported so�ware
development stack for modern runtime infrastructures and professional applications.
WP3 perspective: The optimisation DSL is an integral part of the Modelling Layer (WP3) of
the SODALITE stack and is integrated with the other components developed within the
layer, namely the IDE, the Knowledge Base and the Semantic Reasoner. These components
interact with components of the other SODALITE layers, namely the IaC (WP4) and Runtime
(WP5) layers.

● O5 objective: To use and build on existing solutions, starting with community building or
inclusion from day 1.
WP3 perspective: All the performance model and MODAK code is open-source. We base
our development on other and well-established open-source solutions, more specifically:
Pydantic classes are used to model the data objects behind the DSL, FastAPI and Uvicorn2 3 4

to provide an asynchronous REST API and OpenAPI spec and SQLite to store the5 6

infrastructure, container, and performance data.

● O6 objective: To demonstrate the developed concepts using relevant professional
applications and industries, covering complete so�ware stacks.
WP3 perceptive: The static performance optimisation component supports the DL and MPI
applications used in the SODALITE use-cases, representative of relevant professional
applications and industries.

6 https://www.sqlite.org

5 https://swagger.io/specification/

4 https://pypi.org/project/uvicorn/

3 https://pypi.org/project/fastapi/

2 https://pypi.org/project/pydantic/

1 More details on the IDE can be found in the SODALITE deliverable D3.2.

D3.4 Full release of application and infrastructure performance models - Public Page 7
© Copyright Beneficiaries of the SODALITE Project

https://www.sqlite.org
https://swagger.io/specification/
https://pypi.org/project/uvicorn/
https://pypi.org/project/fastapi/
https://pypi.org/project/pydantic/

Project No 825480.

 1.3 Work performed from the beginning of the project
During the first year of the project, we developed an initial prototype of the application and
infrastructure performance models using standard benchmarks and applications based on the
features that influence performance (see deliverable D3.3 [2]). We considered the raw CPU
performance (in terms of floating-point operations), the compute host memory performance
(bandwidth), the network performance for connecting compute nodes (bandwidth), and the IO
performance when writing to a given file system (number of reads/writes). We did not consider any
accelerator performance (such as GPUs). These performance values were used to make an
infrastructure performance model for a specific hardware system, based on linear polynomial
functions for the scaling part over multiple execution compute nodes. The infrastructure
performance model was then used to build a specific application performance model for the
multi-node scaling execution of an application running on that hardware. The outcome of the
application performance model is the speed-up of execution (time-to-solution metrics) when
varying the number of compute nodes.
In the second year of the SODALITE project, we developed the MODAK component to make use of
the application performance model, especially for the autoscale component (see section 2). We
also tried to extend the application performance model to include accelerator executions, namely
GPUs. We found that the initial approach cannot easily be generalised to hybrid hardware with
acceleration executions because of the possible asynchronous execution between the CPU and
GPU. Furthermore, the initial performance models based on linear polynomials are too
approximated for complex application executions. Therefore, in the last year of the SODALITE
project we have been developing a new performance model to address all those issues, which is
described in section 2.2. The optimisation DSL was finalised (see section 2.1) and MODAK was
further extended and integrated with the other SODALITE components, as we describe in section
2.3.

1.4 Progress beyond the state of the art
The activity reported in this deliverable is contributing to the progress beyond the current state of
the art by offering a common ecosystem for preparing and running optimised application
containers on any system by using a performance model driven approach. The EASEY framework
enables not only building application containers for target clusters and MPI libraries, but also
manages the deployment, job management, and data staging [4]. While this approach is similar to
that of MODAK, it does not model the performance optimisations. Concerning the performance
model deduction, Baughman et al. [5] used application profiling and historical data gathered on
HPC and cloud systems to create application performance models. There are multiple approaches
taken in the HPC community to develop a model based on profiling an application,
micro-benchmarking primitive components of the application, or simulation of application
changes and analytical modelling [6, 7, 8]. Although we use a similar approach, those methods do
not consider the possibility to develop optimised containers for the deployment. MODAK also
addresses the current challenge in the HPC environment of choosing an appropriate application
container, which was built for a given set of hardware capabilities, and assuring the container runs
on the correct hardware. Therefore, to the best of our knowledge, our project presents a novel,
model-based approach to enable static optimisation of applications within containers for
deployment on heterogeneous hardware.

1.5 Structure of the document
This deliverable is structured as follows:

● Section 2 reports on the static performance optimisation, including the description of the
performance model, the optimisation DSL, and the MODAK infrastructure.

D3.4 Full release of application and infrastructure performance models - Public Page 8
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

● Section 3 shows results when using MODAK on two applications, taken from two SODALITE
use-cases [9]: a DL training and a mathematical solver, which we have identified as
adequate candidates for our optimisations.

● Finally, section 4 presents the conclusions.

2 Static Performance Optimisation
Static performance optimisation targets specific optimisations which are applied before the
deployment of an application. This involves porting the application to a target hardware and then
manually optimising it. The optimisation process usually involves using target specific optimised
libraries, enabling application specific optimisations, and tuning application and library
parameters. Parallel scaling requires that these optimisation steps be repeated at increasing scales
until efficiency drops below a threshold. Application experts may also modify the code to target
specific hardware optimisations. This optimisation process may not be portable to other targets
and require repetition when moving to other systems. As such, it is a resource and time intensive
effort that requires expertise on application and infrastructure. Most applications are optimised
once, and the optimised configuration is reused for subsequent runs. In our setup, we chose to
build the applications within containers, therefore the optimisations are applied when building the
containers. The Singularity container technology [10] was chosen to provide a portable and
reproducible runtime for the application deployment, due to better performance and native
support for HPC resources compared to other popular container technologies.
Even though containers offer portability across different targets, optimisations require in-depth
knowledge of the system and compatible libraries (MPI, Network) for any particular HPC system.
For example, MPI libraries and versions on the host machine and in the container should match
when deploying HPC applications for the container to use the hardware-optimised version of MPI
available on the host. DL training frameworks require target specific libraries and drivers to be
configured. More specifically, binaries can be optimised for a given hardware architecture, for
instance for different CPU instruction sets or GPU accelerators (AMD or NVIDIA). Building the
containers then becomes an ad-hoc process for a specific hardware and application, which implies
techniques such as cross-compiling, fat binaries, or runtime binary dispatch. This is a one-to-one
process for the application container preparation between application optimisations and target
hardware. Hence, for a given application we end up with multiple versions of the container with
different optimisations: various combinations of compilers, MPI implementations, Linux
distributions, CPU instruction sets, with and without GPUs and GPU type, optimised libraries, etc.
Several papers in the literature report that optimised Singularity containers can reach comparable
performance to native execution of the applications (see for example [11]).
In the context of our project, the optimised container build is performed by the Quality Expert (QE).
The procedure consists of three steps, in order to minimise the execution time:

1. building with given optimisations
2. checking the correctness (for example, to avoid numerical instabilities due to aggressive

optimisations) of the optimised containers by running, whenever available, the application
test suites

3. benchmarking on the target hardware.
These steps are iterated up to a given performance improvement over the initial baseline
represented by the most portable container. In general, the more optimisations are used, targeting
the specific hardware, the less portable the container becomes. There exists a wide range of
application optimisations, which also depend on the input configuration of the application.
However, in most cases there are a few that will heavily influence the performance and scaling of an
application. Common optimisations that the QE may consider are:

● Compiler optimisations for the specific hardware, eg. use of the appropriate vector
instructions sets (eg. AVX, AVX2, AVX512). Eventually, this requires cross-compiling all the

D3.4 Full release of application and infrastructure performance models - Public Page 9
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

dependencies instead of using the pre-compiled modules available for example in the
Linux distributions.

● Linking with optimised libraries, eg. algebra libraries such as the Intel Math Kernel Library
and the Accelerated Linear Algebra (XLA) graph compiler for TensorFlow applications [12].

● Use of the accelerator drivers (CUDA or ROCM) if they are supported by the applications.
● Use of the optimised host libraries, for example for the network communications via MPI. In

this case, the host and container MPI implementations must be ABI compatible.
The benchmarking is done by employing representative benchmarks of the final application
execution, which can be executed in a limited time and with a limited amount of compute nodes for
parallel applications (ideally a single node). Indeed, complex applications can make use of different
algorithms that require specific optimisations, depending on the input user configurations, so it is
important to use representative benchmarks of real applications usages. The optimisation
procedure will fail if a different configuration is used in production. It can be beneficial for the QE to
interface with the application domain experts so that existing optimisation knowledge can be
reused.
All optimisations are formalised in a DSL configuration (see section 2.1), which is then stored within
MODAK and associated with a handle for the optimised container. To handle the proliferation of
optimised containers, their definition files are generated via the HPC Container Maker (HPCCM) tool
[13]: all Singularity definition files for the optimised containers belonging to an application are
generated from a single high level Python recipe. Then the QE prepares the performance models
(see section 2.2), which requires running the containers on the specific hardware with different
numbers of nodes for parallel applications. Finally, the QE uses MODAK to register the containers
with their corresponding input DSL similar to what is described in 4.3.3 of D4.2 [3] and the
performance model (see section 2.3). Figure 1 illustrates the procedure for the container’s
registration. Based on the DSL input configuration, MODAK produces a unique identifier for the
container (a combination of name and tag of the container). This name, the optimisation
configuration, the definition file used to build the container, and the performance model are
registered in a configuration database, while the container is stored in a Singularity image registry.

Figure 1. Registration of the optimised containers via MODAK.

A user that uses the SODALITE framework provides the input DSL for the optimisations, which is
passed to MODAK, as shown in Figure 2. MODAK exposes a high-level application API for the two

D3.4 Full release of application and infrastructure performance models - Public Page 10
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

types of applications supported: DL training and inference and MPI-parallelised applications. In
summary, MODAK requires the following inputs for the user deployment applications:

● Job submission options for batch schedulers like SLURM and TORQUE (but in a
scheduler-independent fashion), if any (the fallback is to run without a batch scheduler)

● Application configuration such as application type (see above), run and build commands
● Optimisation DSL with the specification of the target hardware, so�ware libraries, and

optimisations to encode. Some of this information (e.g., the target hardware) is
automatically generated during the workflow deployment preparation based on the target
infrastructure (which has to be registered beforehand).

A�er providing the inputs, MODAK searches in the configuration database for an existing container
matching the optimisation input request. Note that the selection of the optimised container is
based on a best match logic, ie. MODAK tries to find a working container which best matches with
the input requests. For example, if a user requests an application container with GPU support,
which is not available in the image registry, MODAK will fall-back to the CPU version. In other words,
optimisations are applied incrementally, providing a portable baseline container version. Then, if
the container is found, MODAK uses the corresponding performance model output to produce a job
script for the execution batch submission and returns the link to download the optimised container
from the image registry. In this respect, MODAK acts as a container manager, such that users do not
need to search the optimised application container for their hardware among possibly hundreds of
available container versions, letting MODAK do the selection.

Figure 2. Selection of the optimised containers via MODAK.

2.1 Optimisation DSL
The optimisation DSL contains the user specified input used by MODAK to recognize optimised
application containers. The SODALITE IDE and the other components developed within WP3 are
used to fill the DSL, whose schema definition is shown in appendix A.
During the last year of the project, the DSL was finalised and implemented in MODAK via Pydantic
classes used to model the data objects behind the DSL. From there, both OpenAPI and JSON
schema and then further documentation can be generated.
The DSL follows in principle the layered structure of the MODAK application itself (Mapper,
Enforcer, etc) in terms of which attributes are mandatory, but also contains more concrete
information about the runtime environment like the number of processors requested. To avoid
maintaining application state and not tying the data within MODAK to explicit workflow steps
within SODALITE, the DSL also has to provide additional application specific configuration and

D3.4 Full release of application and infrastructure performance models - Public Page 11
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

hence contains explicit support for different ML frameworks (such as PyTorch, TensorFlow) and
programming environments, down to application specific notions like AI training vs inference.
With that, the DSL supports the DL training and MPI applications, which are the two compute
intensive workloads of the SODALITE use-cases (see section 3). Specific attributes are provided to
optimise the DL TensorFlow application, namely for the XLA graph compiler. Finally, other
attributes are provided to request GPU accelerators, the deployment options, and eventual data to
be used to execute the application.
The following table shows the current definition of the MODAK DSL (limited to the frameworks used
in the SODALITE use cases). This DSL is used to communicate with MODAK through a HTTP REST
API on different endpoints. Each request shall be done by sending a compliant JSON document
within a POST request to obtain a partially augmented document in the answer body as follows:

● /optimise to get job.job_script and job.build_script attributes filled
● /get_image to get job.application.container_runtime attribute filled
● /get_build to get job.build_script attribute filled
● /get_optimisations to get job.application.container_runtime and

job.job_content attributes filled
Note: whenever job.*_script is returned, the corresponding job.*_content attribute may be
filled instead with the full content of the generated script.

2.2 The performance model
Scaling applications to more nodes improves the performance of most MPI parallel applications.
The parallel speedup and scaling efficiency is defined as follows:

Parallel Speedup ,=
𝑇

𝑟𝑒𝑓

𝑇
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

Efficiency ,=
𝑛

𝑟𝑒𝑓
𝑇

𝑟𝑒𝑓

𝑛 𝑇
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

where and correspond to the runtime on a reference number of nodes (usually a𝑇
𝑟𝑒𝑓

𝑇
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

𝑛
𝑟𝑒𝑓

single node), and the runtime on nodes, respectively. We developed a performance model that𝑛
aims to model the efficiency of an application. Once the optimised container has been built, the QE
can use the representative benchmarks used during the optimisation to check how the
performance scales versus the number of nodes, so that the parallel efficiency can be extracted.
This includes the execution of the GPUs, if available. In order to make better measurements,
timings are taken multiple times and the averages are used. Then the points are fitted with
Amdahl’s law [14]:

Model_Efficiency .=
𝑛

𝑟𝑒𝑓

𝑛(1−𝐹) + 𝐹

The fit is based on a maximum likelihood fitting procedure, where is the free parameter. Errors are𝐹
propagated via a Monte Carlo technique. An example of the performance model extraction is given
in section 3.2.
While we aim to achieve higher speedups as we increase nodes, poor efficiency denotes higher
overheads and higher costs. Applications are usually scaled until the efficiency drops below a
certain percentage (the latest when the efficiency becomes negative). In MODAK, the autoscale
component uses the performance model to predict the efficiency of an application on nodes and𝑛
automatically increase the number of nodes of the deployment, if requested by the user, to reach a
given efficiency value. Furthermore, additional constraints may be added in this optimisation step,
like favoring specific numbers of processors (usually square numbers or power of 2).

D3.4 Full release of application and infrastructure performance models - Public Page 12
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

2.3 MODAK infrastructure
MODAK has already been described in deliverable D4.2 [3]. Here, we briefly give an overview of its
components:

● Mapper: maps application deployment to an optimised container based on the user
specified input DSL (see section 2.1) based on the information provided previously by the
QE. The configuration database is implemented with SQLite, to accomodate for expected
high read to write ratio and ease of deployment.

● Enforcer: sets the pre- and post- requisites for running a container. For example, enabling
graph compiler-based optimizations in a DL framework requires environment settings to be
modified. For MPI-based applications, there are many environment settings that change
the way message passing is optimised based on message size and communication pattern.

● Autotune: allows users to run a user-defined script for autotuning the applications before
they are deployed. This allows it to integrate further optimisations beyond the current
scope of MODAK.

● Autoscale: uses the performance model to scale MPI parallel applications to use more
nodes. Applications are usually scaled until the parallel efficiency drops below a certain
percentage defined by the user (see section 2.2).

Except for the autotune, which will be implemented in the last months of the project within the
WP4 activity and reported in the deliverable D4.3 by the end of the project, all other components
were implemented. In particular, during the last year of the project we have implemented an
autotune part and finalised the mapper and enforcer. A Singularity registry has been developed
within WP6 and it will be documented in the deliverable D6.4 by the end of the project.

3 Performance results
In this section, we report results for the application optimisation procedure, the performance
model extraction, and the MODAK use on two applications. We have identified two applications
that are compute intensive workloads of the SODALITE use-cases [9]:

● a DL training part of the Snow UC
● an MPI parallel mathematical optimisation procedure part of the Clinical UC

Both examples have been identified as adequate candidates for our optimisations and they
represent examples of relevant professional applications.
The HPC testbed hosted in USTUTT [15] was used during the tests. It consists of a front-end node
running Torque, and 5 compute nodes, each hosting an Nvidia GeForce GTX 1080 Ti GPU, a
dual-socket Intel(R) Xeon(R) CPU E5-2630 v4 processor (20 cores in total), and 128GB of main
memory. Two MPI implementations are available: OpenMPI v3.1.3 and MPICH v3.3.1. Singularity is
version 3.8.1.

3.1 Snow UC
We have optimised the skyline extraction component for the Snow use case. The goal of this
component is to obtain the landscape skyline of a photograph via a DL classification method run in
TensorFlow. The dataset used for the training consists of 8,856 images with skyline annotations,
from which 80% is used for training and validation and the remaining 20% for testing. The
component was initially trained using TensorFlow 1.11. The training was performed with a baseline
container taken from DockerHub (tensorflow/tensorflow:1.11.0-gpu-py3) and converged within
approximately 7.2 hours on one GPU node of the HPC testbed (using single core execution). The
training executed until convergence was achieved and early stopping initiated at epoch 20. A
detailed profiling of the application execution is reported in section 6.3.1.1 of the deliverable D3.3
[2].

D3.4 Full release of application and infrastructure performance models - Public Page 13
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

The first step of the optimisation process was the porting of the Python training code for
TensorFlow 2.2, as it has been optimised by the developers to outperform the outdated TensorFlow
1.11. Therefore, we built an optimised Singularity container with TensorFlow 2.2. As a sanity check,
we performed a run until convergence which finished within 8056s (approximately 2.3 hours) and
20 epochs.
As training times converge across epochs within 2-3 epochs, we trained the skyline extractor for 5
epochs across every further optimisation we considered. For the initial Singularity container with
TensorFlow 2.2, that took 3473s, of which 872s constitute training time, while the rest includes data
batching time. This is a well-known bottleneck for DL applications involving massive datasets. To
account for this, we optimised the Python code to perform batch dataset prefetching to the GPU via
the TensorFlow Data API. This shortens the execution pipeline by performing training and data
input concurrently. The training time thus improved to 2181s, of which 514s constitute training
time.
As a final optimisation, we optimised the data movement by staging the dataset on an SSD
attached to the GPU node. The dataset was moved to the SSD, and the dataset directory passed to
Singularity via file binding. This optimisation improved the training time to 424s, of which 236s
constitute training time. This yields an 8.2x speedup improvement over the initial TensorFlow 2.2
run. We tested additional optimisations such as using XLA and various combinations of SSD, GPU
prefetching, and XLA, but these did not yield significant improvements.
Finally, we executed the optimised container up to convergence. It takes 2042s with 21 epochs.
Overall, this is a 12.7x speedup. The test accuracy value is compatible with the baseline container
result. A summary of the execution times is reported in Table 1.

Container configuration Execution time (seconds)

Baseline container taken from DockerHub
(tensorflow/tensorflow:1.11.0-gpu-py3)

25920

Optimised Singularity container: TensorFlow 2.2,
batch dataset prefetching, dataset staging on SSD

2042

Table 1. Execution time of the SnowUC DL baseline and optimised containers used for the training
up to convergence of the model.

MODAK can be used to automate the process of choosing an optimal container, thus returning the
best possible container, in this case one that stages the dataset to an SSD. MODAK stores and
retrieves the optimised container to and from the SODALITE registry by means of the following DSL
input:

{

"job": {

"target": {

"job_scheduler_type": "torque"

},

"job_options": {

"job_name": "skyline-extraction-training",

"node_count": 1,

"request_gpus": 1,

"request_specific_nodes": "ssd"

},

D3.4 Full release of application and infrastructure performance models - Public Page 14
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

"application": {

"app_tag": "skyline-extraction-training",

"app_type": "python",

"executable": "python3 peaklens-original-training_new.py"

},

"optimisation": {

"enable_opt_build": true,

"app_type":"ai_training",

"opt_build": {

"cpu_type": "x86",

"acc_type": "nvidia"

},

"app_type-ai_training": {

"config": {

"ai_framework": "tensorflow"

},

"ai_framework-tensorflow": {

"version": "2.2.1",

"xla": true

}

}

}

}

}

Based on the above DSL input, MODAK will provide the link to the optimised container and the
following submission script for Torque:

#PBS -S /bin/bash

START OF HEADER

#PBS -N skyline-extraction-training

#PBS -l nodes=1:ppn=1:gpus=1

#PBS -l nodes=ssd

#PBS -o job.out

#PBS -j oe

END OF HEADER

cd "${PBS_O_WORKDIR}"

export PATH="${PBS_O_WORKDIR}:${PATH}"

MODAK: START OF OPT:XLA

mkdir xla_dump

export TF_XLA_FLAGS="--tf_xla_auto_jit=2 --tf_xla_cpu_global_jit"

export XLA_FLAGS="--xla_dump_to=xla_dump/generated"

MODAK: END OF OPT:XLA

D3.4 Full release of application and infrastructure performance models - Public Page 15
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

singularity exec --nv "$SINGULARITY_DIR/tensorflow_2.2.1-gpu.sif" python3
peaklens-original-training_new.py

The $SINGULARITY_DIR is the path where MODAK assumes the orchestration framework
downloads the container to. For the sake of completeness, we also report the MODAK response that
will contain the same DSL with some of the defaults filled and additional attributes added as
described in section 2.1:

{

"job": {

"job_options": {

"job_name": "skyline-extraction-training",

"wall_time_limit": null,

"node_count": 1,

"request_gpus": 1,

"core_count": null,

"process_count_per_node": 1,

"standard_output_file": "job.out",

"standard_error_file": null,

"combine_stdout_stderr": true,

"request_event_notification": null,

"email_address": null,

"copy_environment": null,

"copy_environment_variable": null,

"request_specific_nodes": "ssd"

},

"target": {

"job_scheduler_type": "torque",

"name": null

},

"application": {

"app_tag": "skyline-extraction-training",

"app_type": "python",

"executable": "python3 peaklens-original-training_new.py",

"arguments": null,

"container_runtime": "library://tensorflow_2.2.1-gpu",

"mpi_ranks": 1,

"threads": 1,

"build": null

},

"optimisation": {

"enable_opt_build": true,

"enable_autotuning": false,

"app_type": "ai_training",

"opt_build": {

"cpu_type": "x86",

"acc_type": "nvidia"

D3.4 Full release of application and infrastructure performance models - Public Page 16
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

},

"app_type_hpc": null,

"app_type_ai_training": {

"config": {

"ai_framework": "tensorflow"

},

"data": {},

"ai_framework_tensorflow": {

"version": "2.2.1",

"xla": true

}

},

"autotuning": null

},

"job_script": "output/skyline-extraction-training_20211026072252.sh",

"build_script":
"output/skyline-extraction-training_build_20211026072252",

"job_content": null,

"build_content": null

}

}

3.2 Clinical UC
In the Clinical use case, the part that we optimise is the Code-Aster Solver component. This
component uses finite element methods to compute a solution which shows the strain and stress
distribution within the simulated structures, as well as the displacement field for the simulation of
two human vertebrae.
The Code-Aster [16] version used in the test is v14.4.0. It is parallelised via MPI. It requires multiple
dependencies including numpy, OpenBLAS, SCALAPACK, HDF5, MED, METIS, PARMETIS, TFEL,
HOMARD, SCOTCH, MUMPS, PETSc [17]. The baseline container is taken from DockerHub
(codeastersolver/codeaster-mpi:14.4.0), which is based on OpenMPI implementation and without
any GPU support. Executing the code on a single MPI rank based on the mumps library takes about
970s, which is the reference for the optimisations. As a first step for the optimisation, we built an
optimised Singularity container where we specified for the Code-Aster library dependencies the
compiler flags to enable specific hardware optimisations, ie. the GCC compiler flags
-mtune=broadwell -march=broadwell -mavx2 -mfma. This container execution took
783s. Then, as suggested by the application domain experts of the Clinical UC, we tried to use the
PETSc library with METIS domain distribution, which further lowers the execution time to 133s. We
considered that as the final optimised container (7.3x faster than the baseline). A summary of the
execution times is reported in Table 2. For future development, we will investigate the possibility of
building a container with GPU support for the PETSc library.

D3.4 Full release of application and infrastructure performance models - Public Page 17
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

Container configuration Execution time (seconds)

Baseline container taken from DockerHub
(codeastersolver/codeaster-mpi:14.4.0), MUMPS library

970

Optimised Singularity container: compiler specific
hardware optimisations, PETSc library with METIS domain
distribution

133

Table 2. Execution time of the ClinicalUC Code-Aster baseline and optimised containers.

For the performance model extraction, we built two optimised containers with OpenMPI and
MPICH, respectively. We made sure those containers were compatible with the MPI
implementations available on the host, so that we could access the network optimised libraries. We
extracted the scalability performance model for both containers. Runs were executed on 1, 2, 4, and
6 MPI ranks. Then, we tested the performance estimations for a different number of MPI ranks (10,
14). The results are shown in Figure 3. We found good agreement with the efficiency measured with
the application execution. Those models were stored in the MODAK internal database.

Figure 3. Results on the performance model extraction and verification for the Code-Aster test
linked with the two MPI implementations (MPICH on the le� plot, OpenMPI on the right plot): the
square red points are measured data, the black line is the performance model fit, the circle black
points are estimated values by using the performance model.

Finally, the following DSL was used to store and retrieve the optimised container with MPICH
support to and from the SODALITE registry, executing it with 4 MPI ranks:

{

"job":{

"target": {

"job_scheduler_type": "torque"

},

"job_options": {

"job_name": "solver",

"node_count": 1,

D3.4 Full release of application and infrastructure performance models - Public Page 18
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

"process_count_per_node": 20

},

"application": {

"app_tag": "solver_clinicalUC",

"app_type": "hpc",

"executable": "${ASTER_ROOT}/14.4/bin/aster ",

"arguments": "${ASTER_ROOT}/14.4/lib/aster/Execution/E_SUPERV.py
-commandes ${ASTER_INPUT} --memjeveux=8192.0 --tpmax=3600",

"mpi_ranks": 4,

"threads": 1

},

"optimisation": {

"enable_opt_build": true,

"app_type":"hpc",

"opt_build": {

"cpu_type": "x86"

},

"app_type-hpc": {

"config":{

"parallelisation":"mpi"

},

"parallelisation-mpi": {

"library": "mpich",

"version": "3.3.1"

}

}

}

}

}

Similarly, it is possible to consider the OpenMPI container implementation. Optionally, users can
use the performance model to set the number of MPI ranks to be used to reach a given parallel
efficiency by setting the autoscale DSL configuration.
Based on the above DSL input, MODAK will provide the link to the optimised container and the
following submission script for Torque:

#PBS -S /bin/bash

START OF HEADER

#PBS -N solver

#PBS -l nodes=1:ppn=20

#PBS -o job.out

#PBS -j oe

END OF HEADER

cd "${PBS_O_WORKDIR}"

export PATH="${PBS_O_WORKDIR}:${PATH}"

D3.4 Full release of application and infrastructure performance models - Public Page 19
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

export OMP_NUM_THREADS=1

export ASTER_ROOT=/usr/local/workdir/aster

mpirun -np 4 singularity exec \

"$SINGULARITY_DIR/code_aster_14.4.0_mpich_broadwell.sif" \

${ASTER_ROOT}/14.4/bin/aster \

${ASTER_ROOT}/14.4/lib/aster/Execution/E_SUPERV.py \

-commandes ${ASTER_INPUT} --memjeveux=8192.0 --tpmax=3600

The $SINGULARITY_DIR is the path where MODAK assumes the orchestration framework
downloads the container to. The $ASTER_INPUT points to the input configuration file to run
Code-Aster.

4 Concluding Remarks
Applying optimisations specifically targeting the hardware is crucial to get performance for
compute intensive applications. However, it breaks performance portability, such that a user is
faced with different optimised implementations of the same application. In this report, we
presented a procedure to manage optimised applications within containers to specifically address
the goal of achieving performance on specific target hardware. We presented the full release of the
application and infrastructure performance models integrated in the SODALITE MODAK
component. A performance model for the parallel applications was also presented. We can use this
model to predict application performance scaled to execute on multiple nodes. Furthermore, we
explained the MODAK DSL to select the optimised application containers and how they can run on
batch systems. The work reported is relevant to the T3.3 “Application and Infrastructure
Performance Optimisation Modelling”. Results of the optimisations and handling of the optimised
containers via MODAK were also presented for DL training and MPI-based applications taken from
the SODALITE use cases. We found that the use of optimised containers and setup gives up to a 13x
speed-up in performance. Furthermore, we tested the possibility to auto-scale the MPI-based
application execution by means of the performance model.

D3.4 Full release of application and infrastructure performance models - Public Page 20
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

References
1. SODALITE Consortium, Application deployment and dynamic runtime - Intermediate

version, Technical deliverable 5.2, 2021.
2. SODALITE Consortium, Prototype of application and infrastructure performance models,

Technical deliverable 3.3, 2020.
3. SODALITE Consortium, IaC Management - intermediate version, Technical deliverable 4.2,

2021.
4. Maximilian Höb and Dieter Kranzlmüller, Enabling EASEY deployment of containerized

applications for future HPC systems, 2020, arXiv:2004.13373 [cs.DC].
5. Matt Baughman, Ryan Chard, Logan T. Ward, Jason Pitt, Kyle Chard, and Ian T. Foster,

Profiling and Predicting Application Performance on the Cloud, 2018, IEEE/ACM 11th
International Conference on Utility and Cloud Computing (UCC), 2018, pp. 21-30, doi:
10.1109/UCC.2018.00011.

6. Alexandru Calotoiu, Marcin Copik, Torsten Hoefler, Marcus Ritter, Sergei Shudler ,and Felix
Wolf, ExtraPeak: Advanced Automatic Performance Modeling for HPC Applications, 2020,
In Software for Exascale Computing-SPPEXA 2016-2019. Springer, Cham, 453–482.

7. Allan Snavely, Laura Carrington, Nicole Wolter, Jesus Labarta, Rosa Badia, and Avi
Purkayastha, A framework for performance modeling and prediction, 2002, In SC’02:
Proceedings of the 2002 ACM/IEEE Conference on Supercomputing. IEEE, 21–21.

8. Allan Snavely, Xiaofeng Gao, Cynthia Lee, Laura Carrington, Nicole Wolter, Jesus Labarta,
Judit Gimenez, and Philip Jones, Performance modeling of HPC applications, 2004, In
Advances in Parallel Computing. Vol. 13. Elsevier, 777–784.

9. SODALITE Consortium, SODALITE platform and use cases implementation plan, Technical
deliverable 6.1, 2019.

10. Gregory M Kurtzer, Vanessa Sochat, and Michael W Bauer, Singularity: Scientific
containers for mobility of compute, 2017, PLoS ONE 12(5): e0177459.
https://doi.org/10.1371/journal.pone.0177459.

11. Alfred Torrez, Timothy Randles and Reid Priedhorsky, HPC Container Runtimes have
Minimal or No Performance Impact, 2019 IEEE/ACM International Workshop on
Containers and New Orchestration Paradigms for Isolated Environments in HPC
(CANOPIE-HPC), Denver, CO, USA, 2019, pp. 37-42, doi:
10.1109/CANOPIE-HPC49598.2019.00010.

12. Chris Leary and Todd Wang. XLA: TensorFlow, compiled, 2017, TensorFlow Dev Summit.
13. Scott McMillan, Making containers easier with HPC container maker, 2018, In

Proceedings of the SIGHPC Systems Professionals Workshop (HPCSYSPROS 2018),
Dallas, TX, USA.

14. Gene M. Amdahl, Validity of the Single Processor Approach to Achieving Large-Scale
Computing Capabilities, 1967, AFIPS Conference Proceedings (30): 483–485.
doi:10.1145/1465482.1465560.

15. SODALITE Consortium, Initial implementation and evaluation of the SODALITE platform
and use cases, Technical deliverable 6.2, 2020.

16. Code-Aster, https://www.code-aster.org, 2021.
17. Code-Aster dependencies description at https://www.code-aster.org/spip.php?article275,

2021.

D3.4 Full release of application and infrastructure performance models - Public Page 21
© Copyright Beneficiaries of the SODALITE Project

https://doi.org/10.1371/journal.pone.0177459
https://www.code-aster.org/
https://www.code-aster.org/spip.php?article275

Project No 825480.

Appendix A - MODAK DSL Schema Definition
MODAK DSL schema definition with a brief description of the attributes. Mandatory attributes are
marked with a *.

D3.4 Full release of application and infrastructure performance models - Public Page 22
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

job*
The toplevel Job object

job_options*
Options to pass to the queueing system

job_name: string
default: job

wall_time_limit: number

node_count: integer > 0

request_gpus: integer > 0

core_count: integer > 0
core count to use when running this job. Passed to the queueing system.

process_count_per_node: integer > 0
default: 1

standard_output_file: string
default: job.out

standard_error_file: string

combine_stdout_stderr: boolean
default: True

request_event_notification: string

email_address: string

copy_environment: boolean

copy_environment_variable: string

request_specific_nodes: string

target
Description of the target where this application is going to run.
If nothing is specified only a Unix shell environment will be assumed.

job_scheduler_type: string
The queuing system to target if the infrastructure name is not specified

name: string
The target infrastructure

D3.4 Full release of application and infrastructure performance models - Public Page 23
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

application*

app_tag: string

app_type: string
this applications type

executable*: string

arguments: string

container_runtime: string
Will be filled/overwritten in the response if an optimised container was found.

mpi_ranks: integer > 0
Number of MPI ranks to use when running the application as part of a job. Passed to mpirun or srun.
default: 1

threads: integer > 0
Number of OpenMP threads to use when running the application as part of a job. Set before mpirun
or srun.
default: 1

build
Build information in case on-site rebuilding of the application is desired and possible

src*: string
Source URL for the application

build_command*: string
commands (shell script) to build the application, use {{BUILD_PARALLELISM}} to obtain number of
parallel build jobs

build_parallelism: integer > 0
Number of parallel build jobs
default: 1

D3.4 Full release of application and infrastructure performance models - Public Page 24
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

optimisation

enable_opt_build*: boolean

enable_autotuning: boolean
default: False

app_type*: string
Application type

opt_build

cpu_type*: string
The CPU to optimise the build for

acc_type: string
The accelerator to optimise the build for

app_type-hpc
MPI specific configuration for optimisation

config*

parallelisation*: string
Parallelisation used in this HPC application

data
Application specific data

parallelisation-mpi*

library*: string

version*: string

app_type-ai_training
DL training application

config*

ai_framework*: string
An enumeration.

data
Application specific data

D3.4 Full release of application and infrastructure performance models - Public Page 25
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

ai_framework-tensorflow*

version*: string

xla*: boolean

autotuning

tuner*: string

input*: string

autoscale

efficiency: value>0
Efficiency value used in the performance model to retrieve the number of MPI ranks.

max_mpi_ranks: integer > 0
Number of maximum MPI ranks to use when running the application as part of a job.
default: same as mpi_ranks

job_script: string
A link to the job script generated for the request

build_script: string
The content of the build script generated for the request

job_content: string
The content of the job script generated for the request

build_content: string
The content of the build script generated for the request

D3.4 Full release of application and infrastructure performance models - Public Page 26
© Copyright Beneficiaries of the SODALITE Project

