C’ Sodalite

SOftware Defined AppLication Infrastructures managemenT and Engineering

Application deployment
and dynamic runtime -
intermediate version

D5.2

ATOS
31.1.2021

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 825480.

¢ .
{ } Project No 825480. ’SOdallte

Deliverable data
Deliverable D5.2 - Application deployment and dynamic runtime - intermediate version
JesuUs Gorrofiogoitia (Atos), Jorge Fernandez Fabeiro (Atos), Lucas Pelegrin
Caparrds (Atos), Indika Kumara (JADS/UVT), Dragan Radolovi¢ (XLAB), Nejc
Authors . . .
Bat (XLAB), Kamil Tokmakov (USTUTT), Kalman Meth (IBM), Giovanni
Quattrocchi (POLIMI), Paul Mundt (ADPT)
Reviewers Dennis Hoppe (USTUTT), Zoe Vasileiou (CERTH)
Dissemination Public
level
Name Change Date
History of Atos Outline created 18.10.2020
changes
Section 2. Sections 4.5, 4.8,
Atos 49.4.1,5.2 8.01.2021
ALL Partners gontrlbutlon to 13.01.2021
sections 4,5
Partners’ contribution to
ALL sections 1,3, 4, 5,6 15.01.2021
ALL Final contributions 18.01.2021
Atos Version for internal review | 18.01.2021
ALL Addressing internal review | 25.01.2021
Atos, XLAB Final version 31.01.2021
Acknowledgement

The work described in this document has been conducted within the Research & Innovation action
SODALITE (project no. 825480), started in February 2019, and co-funded by the European
Commission under the Information and Communication Technologies (ICT) theme of the H2020
framework programme (H2020-1CT-16-2018: Software Technologies)

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 1
© Copyright Beneficiaries of the SODALITE Project

4 .
{ } Project No 825480. ’SOdallte

Table of Contents

List of figures

List of tables
Executive Summary
Glossary

1 Introduction
1.1 Deliverable goal
1.2 Structure of the document

2 Runtime Layer Architecture

3 Project development toolset
3.1 GitHub Repositories
3.2 Continuous Integration and Continuous Delivery CI/CD
3.3 Software QA
3.4 Runtime Layer artifacts

4 New features developed in the second project year
4.1 Orchestration - HPC Driver (ALDE)
4.2 laC Data Management
4.3 Dynamic Monitoring
4.4 HPC Monitoring
4.5 Edge Monitoring
4.6 SkyDive Network Monitoring
4.7 Alerting
4.8 Deployment Refactorer
4.9 Node Manager Refactoring
4.10 Refactoring Option Discoverer

5 Extension of the existing components (Atos, All)
5.1 Orchestrator
5.2 Monitoring

6 Updated Runtime Layer Development Plan (Atos, All)
6.1 M30 Release
6.2 M36 Release

7 Conclusion

8 References

10
10
11

11

13
13
13
13
14

15
17
19
24
28
30
32
34
35
44
47

49
50
59

62
62
63

65

66

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 2
© Copyright Beneficiaries of the SODALITE Project

{H*} Project No 825480. ? SOdalite

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 3
© Copyright Beneficiaries of the SODALITE Project

{*”} Project No 825480. ? SOdalite

List of tables

List Of Tables
= Table1-Runtimel if

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 4
© Copyright Beneficiaries of the SODALITE Project

{'**} Project No 825480. /’ SOdalite

Executive Summary

This deliverable reports on the status of the development, at M24, of the SODALITE Runtime Layer
and the integration of its components with the rest of the SODALITE platform. This is the second of
three deliverables in this series, to be released annually during the project lifetime. This deliverable
complements D3.1' and D4.2%, and the interested reader is encouraged to read these deliverables
to get a better understanding of the overall technology stack of the SODALITE platform.

The Runtime Layer offers three main features: (1) the orchestration of the deployment of
applications on heterogeneous infrastructures, (2) the collection of runtime monitoring
information, and (3) the adaptation of applications for performance improvement.

The main focus of the deliverable is to present the new features that have been incorporated into
the Runtime Layer since the last release in M12 D5.1% , with the focus on the innovation they bring,
their internal architecture within the Runtime Layer, the main functional aspects they offer, the
current status of their development, the analysis of their QA assessment, and the planned
developments for next releases in M30 and M36.

e The Orchestration Layer: The M24 Runtime Layer release supports the deployment of
orchestrated, containerized applications in Cloud infrastructures managed by AWS,
OpenStack or Kubernetes, as well as on HPC clusters managed by SLURM, TORQUE/PBS
Pro schedulers. The access to the Orchestration layer is protected by the adoption of the
SODALITE IAM Authentication. Orchestration has been extended to support
multiplatform, hybrid data management, by adopting stream-driven, data transfer
technology adopted from the RADON project?, as a result of our mutual collaboration. This
laC data management feature will be extended to support HPC environments in
SODALITE.

e The monitoring layer: has been significantly redesigned to support dynamic monitoring
of targets on both Cloud infrastructures, such as OpenStack, and on HPC clusters, such
as those managed by TORQUE/PBS Pro and SLURM schedulers, on Edge and also on their
interconnecting network. Moreover, Monitoring supports the broadcasting of alert
notifications to subscribers, such as those in Refactoring, upon the detection of QoS
violations.

e The Refactoring Layer: Deployment refactorer was integrated with the SODALITE
monitoring infrastructure to support the adaptation of the deployment topology of an
application in response to monitoring data and alerts. The machine learning (ML)
pipeline for building ML models for predicting the performance of many deployment
alternatives of an application has been implemented and evaluated. These predictiction
models enable the selection and switching among deployment variants at runtime. The
policy-based deployment adaptation was improved to support the various event-based
adaptation use cases. The dynamic discovery of nodes has been improved to support node
(TOSCA) policies. Node Manager implementation and evaluation was completed. Node
Manager provides runtime resource management at three levels: cluster-level smart
load balancing, machine-level supervision of resource contention, and container-level
control theoretical vertical scalability.

Partial integration of the Runtime Layer components, mostly for orchestration drivers, some
monitoring and refactoring components have been completed in M24 release.

Next steps towards the release of the final version of the Runtime Layer (M30, M36) are focusing on
the complete integration of the entire Runtime Layer, the support of deployment to additional
target infrastructures such as OpenFaa$S and Google Cloud, the automation of dynamic monitoring
configuration upon deployment, the complete implementation of the alerting management, the

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 5
© Copyright Beneficiaries of the SODALITE Project

{”*} Project No 825480. ? SOdalite

implementation of specialized monitoring dashboards, the support of all redeployment adaptation
scenarios and several improvements in refactoring features.

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 6
© Copyright Beneficiaries of the SODALITE Project

94 .
{ } Project No 825480. ’SOdallte

Glossary

Acronym Explanation

AAI Authentication and Authorization Infrastructure

AADM Abstract Application Deployment Model
Application Ops Expert

AOE The equivalent process from the ISO/IEC/IEEE standard 12207 Systems
and software engineering — Software life cycle processes is Operation
processes and maintenance processes

API Application Programming Interface

AWS Amazon Web Services

cl/cD Continuous Integration / Continuous Deployment

CPU Central Processing Unit

CSAR Cloud Service Archive

DI Deployment Instance

DTR Decision Tree Regression

ECA Event Condition Action

FaaS Function as a Service

FPGA Field-Programmable Gate Array

FTP File Transfer Protocol

GB Gigabyte

GCS Google Cloud Storage

GPU Graphics Processing Unit

HDFS Hadoop Distributed File System

HPC High Performance Computing

HTTP Hypertext Transfer Protocol

laC Infrastructure as Code

1AM Identity and Access Management

ID Identifier

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 7

© Copyright Beneficiaries of the SODALITE Project

4 .
{ } Project No 825480. ’SOdallte

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers
/0 Input/Output

loT Internet of Things

IPMI Intelligent Platform Management Interface
ISO International Organization for Standardization
JSON JavaScript Object Notation

K8sS Kubernetes

LRE Lightweight Runtime Environment

ML Machine Learning

MLOps Machine Learning operations

MLP-NN Multilayer Perceptron Neural Network

MQTT Message Queue Telemetry Transport

M<X> Month <X>

N/A Not Available

QA Quality Assurance

Quality Expert

QE The equivalent process from ISO/IEC/IEEE standard 12207 Systems and
software engineering — Software life cycle processes: Infrastructure
management and Configuration management processes

QoS Quality of Service

QoE Quality of Experience
Ops Operations

(0} Operating System

PBS Portable Batch System
PoC Proof of Concept

Resource Expert

RE The equivalent process from ISO/IEC/IEEE standard 12207 Systems and
software engineering — Software life cycle processes is Quality
Management and Quality assurance processes

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 8
© Copyright Beneficiaries of the SODALITE Project

94 .
{ } Project No 825480. ’SOdallte

REST REpresentational State Transfer
RFR Random Forest Regression
S3 Amazon Simple Storage Service
SLA Service Level Agreement
SPARQL SPARQL Protocol and RDF Query Language
SQL Structured Query Language
SRM Storage Resource Manager
SSH Secure SHell
TB TOSCA Blueprint
TOSCA Topology and Orchestration Specification for Cloud Applications
uc (UML) Use Case
ul User Interface
UML Unified Modeling Language
VM Virtual Machine
WebDAV Web Distributed Authoring and Versioning
WP<X> Work Package <X>
WSGI Web Server Gateway Interface
XML Extensible Markup Language
YAML YAML Ain't Markup Language
Y<X> Year <X>
D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 9

© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ’ SOdalite

1 Introduction

Modern software coexists with heterogeneous, software-defined, high-performance computing
environments and resources, including cloud servers, GPUs, FPGAs, Kubernetes, FaaS, etc.
Advanced applications require complex and heterogeneous deployments that match their
components with the infrastructure that offers the best performance fulfilling their requirements.
In this context, SODALITE aims to address this heterogeneity by providing a toolset that enable
developers and infrastructure operators to achieve faster development, deployment and execution
of applications on different heterogeneous infrastructures as also presented in deliverable D5.1:

e a pattern-based abstraction library with support for application, infrastructure and
performance and operation abstractions;

e a metamodel for designing and programming infrastructures and applications, based on
the abstraction library;

e a deployment platform that statically optimizes the abstract applications on the target
infrastructures;

e automated optimization and management of applications at runtime.

In particular, the Runtime Layer of SODALITE is responsible for the orchestration, monitoring and
refactoring of applications on these infrastructures. The objectives of the Runtime Layer are:

e Orchestrating the initial deployment of an application. The Runtime Layer gets the
TOSCA® blueprint of an application and deploys each application component on the
specified targets, which may be heterogeneous.

e Collecting runtime monitoring information at different levels: application, runtime
environment and infrastructure. With this information, it is possible to analyse the
application’s performance, and apply corrective strategies upon the detection of QoE
violations.

e Enabling adaptation of the application to improve its performance. In order to fulfil the
application’s performance goals, different mechanisms could be applied at runtime.

1.1 Deliverable goal

This deliverable presents the functional specification and the technical implementation of the
intermediate release (M24) of the SODALITE Runtime Layer, with the focus on the main features
that have been incorporated to this layer since the last release at M12, reported in D5.1. For each
new feature, this document emphasizes its innovative aspect, architecture, functional
characteristics, status of its current implementation and planned work for the next development
phases, namely M30 and M36.

This document also reports on the progress achieved on existing features of the Runtime Layer
reported in D5.1 and on the adoption of the automated SODALITE development methodology and
toolset, which relies on the usage of public code repositories, CI/CD pipelines and software QA
assessment.

This deliverable has been developed in parallel and coherently to WP2, WP5 and WP6 deliverables
D2.2,D4.2,D6.3, D6.6 and to the work developed in WP3 as part of the second project year.
Throughout the document, we are using the terms Application Ops Experts (AOE), Resource
Experts (RE) and Quality Experts (QE), as described in D5.1.

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 10
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. /’ SOdalite

1.2 Structure of the document

The document is structured as follows: Section 2 gives an updated overview of the Runtime Layer
architecture, highlighting the main changes introduced since the last reported version of D5.1.
Section 3 introduces the development DevOps toolset and methodology adopted for the building
and delivering of the Runtime layer as well as the locations of the source code repositories of its
different components. It also describes the adopted software QA process and tool set, and pointers
to QA assessment results for the components of the Runtime layer. Section 4 provides a detailed
description of the main features incorporated to the Runtime layer since the last release like
presented in D5.1, with the emphasis on their innovation, current development status and plans
for next releases. Section 5 outlines the development changes for those features of the Runtime
layer that were already released in the M12 release. Section 6 summarizes the feature development
plan for next releases (M30, M36). Section 7 concludes the document, summarising the current
status of the Runtime Layer and the next steps towards the final release.

2 Runtime Layer Architecture

The architecture of the Runtime Layer was introduced in [D5.1]. This section describes the changes
that have been adopted in this architecture since then.

As explained in D5.1, this layer is composed of three main building blocks (see Eigure 1),
corresponding to each of the layer objectives:

The Orchestrator block is composed of the orchestrator itself and a set of components that
facilitate the deployment and reconfiguration of an application, and the management of a specific
infrastructure. Infrastructures are managed via their specific execution platform manager. We are
targeting to support the infrastructures shown in the figure.

The current architecture has been extended to include the drivers supported and integrated within
the orchestrator have been included:

e OS driver: the orchestrator uses this driver to interface with the shell of the VM in Cloud
infrastructures such as OpenStack or AWS,

® TORQUE driver: the orchestrator uses this driver to interface with the HPC TORQUE
scheduler in order to support the deployment of batch jobs in HPC clusters. Other similar
drivers for HPC schedulers could be developed based on this one (e.g. SLURM,
TORQUE/PBS Pro),

e K8S driver: this driver enables the orchestrator to interface Kubernetes to support the
deployment of container based application components in pods,

e OpenFaas$ driver: to support the deployment of serverless functions into OpenFaas - to be
supported in Y3 of the project,

e AlWSdriver: to support the deployment into AWS.

It has also been extended to introduce the new required interfaces for Identity and Access
Management (IAM) (e.g. IAMIntrospectionAPl) and for the retrieval of deployment secrets (e.g.
SecretVaultAPl).

The Monitoring block is composed of a monitoring server, a dashboard and a set of probes that
retrieve metrics from the different monitoring targets: VMs, HPC schedulers and nodes, runtime
environment, application components, etc. This block includes new components not previously
included in the former architecture:

e Monitoring Dashboard: this frontend provides visualization of monitoring information
(using different graphs and gauges) obtained for selected target application components

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 11
© Copyright Beneficiaries of the SODALITE Project

‘¥ Sodalite

Project No 825480.

and execution environments. This dashboard offers individual views for each user’s
deployed application, which are accessible through the SODALITE IDE. This is the standard
access point for Application Ops Expert (AOEs) to browse their apps monitoring data.
Dashboard uses the MonitoringAPI REST interfaces to query monitoring data.

Monitoring Alert Manager: manages defined alerting rules to trigger notifications (and the
associated monitoring data) to subscribers (e.g. orchestration and refactoring
components) when the rule condition holds for the target monitoring metrics. This is the
standard way for some SODALITE platform components to be notified with monitoring
data. The AlertingAPI REST interface is used by the Orchestrator, Node Manager and
Deployment Refactorer components to subscribe themselves to concrete alerts.

Finally, the Refactoring block, responsible for applying adaptations to applications to improve its
performance, is composed of the Refactoring Option Discoverer, the Node Manager and the
Deployment Refactorer. The internal interactions among these block components have been made
explicit in the architecture, through the REST APl exposed by each component.

WP5 - Runtime Layer Architecture Overview

Refactoring\

(=]
1 Deployment Refactorer 'C\Z,
= R

efactoringAPI

2 / ™ . |\
P (] / \
o A e \
o, ._) Q /LOT IE‘:DC;DALITE / Q ‘ |
ecretVaul mage epfoymen / anagemen iscovefing /
S VaultAPI 1AM Imag D t : M tAPI Di API /’ |
\ntrcspechw\AP\ RegjstryAPI PreparationAP| / \ /o
i A / v 2 ‘
. \ | /
) P - use use /
Orchestrator) T m T
SN 7 i | i =
[[=] ‘/ al | a Refactoring
Qrchestrator Q Dashboard Alert Manager | Node Manager Option
r———— OrchestratorAPI / Discoverer
FN ay |
5 s i N, o |
- . / N Nppe——=—y
~"use _~“use [fuse \use “\use B
P / \ g
afF a [=] a [=]
AWS Openstack Torque K8S OpenFaaS 67 O Q
Drw'er DG G Dr\v?r BiET Momlo[mgAP\ I;xﬁnmerAH Alerting AP SemanticReasonerAP|
o
use use use use use Monncrmg Exporter

¥ L - = .
[AWS U ‘ OpenStack U | Torque U ‘ Kubernetes U ‘ OpenFaaS u

Figure 1 - Runtime Layer Architecture

As shown in the general SODALITE architecture [D5.1], the Runtime Layer components need to
interact with other components in the SODALITE platform to fulfill their objectives. The following
describes the changes in the interactions of the Runtime layer with components of the other layers:

IDE [D3.1]. The laC blueprint is sent to the Orchestrator via the IDE, where the AOE approves
the deployment. Also, any modification in the deployment must be approved by the expert.
With regards to the Monitoring block, the users will be able to visualize monitoring
information from the IDE for each deployed application by accessing its associated
dashboard in the Monitoring Dashboard.

Deployment Preparation [D4.2]. Given that the input to the Orchestrator is the ID of a
blueprint, the Orchestrator gets from the Deployment Preparation the actual content of the
blueprint, i.e., the TOSCA file and the Ansible playbooks.

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version

Page 12

© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. /’ SOdalite

e Semantic Reasoner [D3.1]. The Refactoring block uses the model contained in the
Semantic Reasoner to discover additional deployment alternatives. These alternatives are
saved back to the Semantic Reasoner.

3 Project development toolset

This section introduces the methods and toolsets adopted within SODALITE to produce and deliver
a high quality of code. Details on these aspects are reported in D1.4°. Same content is already
introduced in Section 3 of D4.2 but replicated and adapted here for the sake of self-consistency.

3.1 GitHub Repositories

SODALITE chose GitHub as its primary publicly available development version control system.
GitHub acts as the open source community not only as a version control system but also as a
developers collaboration platform by offering many available tools, such as an issue tracker, a
project management tool, a wiki etc., and further introducing means to intensify collaboration.

All the available open-sourced code produced in SODALITE can be accessed through SODALITE’s
GitHub organization: https://github.com/SODALITE-EU.

SODALITE utilizes different project development collaboration features provided by GitHub such
as: project boards, teams, discussions through issues, pull requests, and peer reviews of code.

3.2 Continuous Integration and Continuous Delivery CI/CD

SODALITE uses the Jenkins” to support automated testing, versioning and publishing processes for
SODALITE components. To improve the quality and the automation of the CI/CD process, a
convention for the development process has been set up with specific examples of usage described
in detail in D6.3%.

3.3 Software QA

SODALITE is bound to produce mostly open source code on a publicly available version control
system. The SODALITE consortium also recognizes the high impact of developing excellent quality
of code of its software components as a high priority task. For this reason the free and open online
SonarCloud® utility is used to assess the quality of the code developed. To enable developers to
deliver better code quality, SonarCloud shows various dashboards and enables for a streamlined
integration with GitHub, providing developers with a good estimate of code quality even before
merging the code into the master/main branch. This feature among many others is extensively
used in the SODALITE CI/CD pipeline providing both the developer and the reviewer of the code
with significant and important insights about the quality of developed code, as well as providing
useful suggestions on how to improve the code.

All of the repositories of the SODALITE components were integrated with SonarCloud during the
second year of the project. The main metrics collected concern the following aspects:

e The number of bugs: bugs in SonarCloud are identified exploiting various static analysis
tools specific to the supported languages.

e The number of security vulnerabilities and hotspots. As highlighted in the SonarCloud
manual®®, “with a Hotspot, a security-sensitive piece of code is highlighted, but the overall
application security may not be impacted. It's up to the developer to review the code to
determine whether or not a fix is needed to secure the code. With a vulnerability, a problem
that impacts the application's security has been discovered that needs to be fixed
immediately”.

e The number of code smells.

e The code coverage defined in terms of lines of code that are exercised by automated test
cases.

e The amount of replicated code.

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 13
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU

Project No 825480.

‘¥ Sodalite

The general goal of SODALITE with respect to these metrics is to continuously keep them under
control and improve them from release to release. As for the components belonging to the /aC
Management Layer, we expect the Runtime Layer metrics to show relatively high values considering

that it is used by most of the other components of the platform.

IWe provide for each stable component an overview of its current status in terms of the SonarCloud
metrics in the following sections.

3.4 Runtime Layer artifacts

The following Table 1 provides links to the GitHub repositories, SonarCloud analysis reports and
Dockerized images of each of the components of the Runtime Layer reported in this deliverable.
Details on the QA assessment results reported by SonarCloud for each component of the Runtime
Layer and how they were addressed are reported in Sections 4 and 5.

Component Github Repository | SonarCloud Dashboard | Image on Docker Hub
Orchestrator -//githut https://sonarcloud.io/d Lhttos://hub.doct n/r/sod
2id= i
m/SODALITE-EU/X aliteh2020/xopera-rest-api
fpecarestapt 2.https://hub.docker.com/r/sod
aliteh2020/xopera-flask
3.https://hub.docker.com/r/sod
l o
HPC Driver https://github.co | https://sonarcloud.io/d | N/A*
Ide E-EU_alde
laC Data https://github.co | N/A N/A
Management | m/RADON-SODALI
IE
Monitoring https://github.co | https://sonarcloud.io/d | 1.https://hub.docker.com/r/pro
m/SODALITE-EU/ 2id= m/prometheus
m m nsul
Alert Manager | https://github.co | https://sonarcloud.io/d | N/A
m m
HPC exporter | https://github.co | https://sonarcloud.io/d | N/A
pc-exporter E-EU_hpc-exporter
Intel NCS2 https://github.co | https://sonarcloud.io/d | https://hub.docker.com/reposit
exporter m/adaptant-labs/ 2id= ory/docker/adaptant/promethe
prometheus _ncs2 | -labs_prometheus_ncs | us-ncs2-exporter
—exporter 2_exporter
EdgeTPU https://github.co | https://sonarcloud.io/d | https://hub.docker.com/reposit

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version

© Copyright Beneficiaries of the SODALITE Project

Page 14

https://github.com/SODALITE-EU/xopera-rest-api
https://github.com/SODALITE-EU/xopera-rest-api
https://github.com/SODALITE-EU/xopera-rest-api
https://sonarcloud.io/dashboard?id=SODALITE-EU_xopera-rest-api
https://sonarcloud.io/dashboard?id=SODALITE-EU_xopera-rest-api
https://sonarcloud.io/dashboard?id=SODALITE-EU_xopera-rest-api
https://hub.docker.com/r/sodaliteh2020/xopera-rest-api
https://hub.docker.com/r/sodaliteh2020/xopera-rest-api
https://hub.docker.com/r/sodaliteh2020/xopera-flask
https://hub.docker.com/r/sodaliteh2020/xopera-flask
https://hub.docker.com/r/sodaliteh2020/xopera-nginx
https://hub.docker.com/r/sodaliteh2020/xopera-nginx
https://github.com/SODALITE-EU/alde
https://github.com/SODALITE-EU/alde
https://github.com/SODALITE-EU/alde
https://sonarcloud.io/dashboard?id=SODALITE-EU_alde
https://sonarcloud.io/dashboard?id=SODALITE-EU_alde
https://sonarcloud.io/dashboard?id=SODALITE-EU_alde
https://github.com/RADON-SODALITE
https://github.com/RADON-SODALITE
https://github.com/RADON-SODALITE
https://github.com/SODALITE-EU/monitoring-system
https://github.com/SODALITE-EU/monitoring-system
https://github.com/SODALITE-EU/monitoring-system
https://github.com/SODALITE-EU/monitoring-system
https://sonarcloud.io/dashboard?id=SODALITE-EU_monitoring-system
https://sonarcloud.io/dashboard?id=SODALITE-EU_monitoring-system
https://sonarcloud.io/dashboard?id=SODALITE-EU_monitoring-system
https://sonarcloud.io/dashboard?id=SODALITE-EU_monitoring-system
https://hub.docker.com/r/prom/prometheus
https://hub.docker.com/r/prom/prometheus
https://hub.docker.com/_/consul
https://hub.docker.com/_/consul
https://github.com/SODALITE-EU/monitoring-system
https://github.com/SODALITE-EU/monitoring-system
https://github.com/SODALITE-EU/monitoring-system
https://github.com/SODALITE-EU/monitoring-system
https://sonarcloud.io/dashboard?id=SODALITE-EU_monitoring-system
https://sonarcloud.io/dashboard?id=SODALITE-EU_monitoring-system
https://sonarcloud.io/dashboard?id=SODALITE-EU_monitoring-system
https://sonarcloud.io/dashboard?id=SODALITE-EU_monitoring-system
https://github.com/SODALITE-EU/hpc-exporter
https://github.com/SODALITE-EU/hpc-exporter
https://github.com/SODALITE-EU/hpc-exporter
https://sonarcloud.io/dashboard?id=SODALITE-EU_hpc-exporter
https://sonarcloud.io/dashboard?id=SODALITE-EU_hpc-exporter
https://sonarcloud.io/dashboard?id=SODALITE-EU_hpc-exporter
https://github.com/adaptant-labs/prometheus_ncs2_exporter
https://github.com/adaptant-labs/prometheus_ncs2_exporter
https://github.com/adaptant-labs/prometheus_ncs2_exporter
https://github.com/adaptant-labs/prometheus_ncs2_exporter
https://sonarcloud.io/dashboard?id=adaptant-labs_prometheus_ncs2_exporter
https://sonarcloud.io/dashboard?id=adaptant-labs_prometheus_ncs2_exporter
https://sonarcloud.io/dashboard?id=adaptant-labs_prometheus_ncs2_exporter
https://sonarcloud.io/dashboard?id=adaptant-labs_prometheus_ncs2_exporter
https://hub.docker.com/repository/docker/adaptant/prometheus-ncs2-exporter
https://hub.docker.com/repository/docker/adaptant/prometheus-ncs2-exporter
https://hub.docker.com/repository/docker/adaptant/prometheus-ncs2-exporter
https://github.com/adaptant-labs/edgetpu-exporter
https://sonarcloud.io/dashboard?id=adaptant-labs_edgetpu-exporter
https://hub.docker.com/repository/docker/adaptant/edgetpu-exporter

‘¥ Sodalite

exporter m/adaptant-labs/ 2id=

SkyDive
exporter

IPMl exporter | https://github.co | https://sonarcloud.io/d | N/A

Deployment | https://github.co | https://sonarcloud.io/d | https://hub.docker.com/r/sodal
Refactorer m/SODALITE-EU/r 2id= iteh2020/rule_based_refactorer

Node Manager | https://github.co | https://sonarcloud.io/d | N/A

Refactoring https://github.co | https://sonarcloud.io/d | https://hub.docker.com/r/sodal
Option m/SODALITE-EU/r 2id= iteh2020/refactoring_option_di
Discoverer efactoring-option- | E-EU_refactoring-optio | scoverer

Table 1 - Runtime Layer artifacts

4 New features developed in the second project year

This section presents the main new features included within the M24 release of the Runtime Layer.
Some of these features were conceptually anticipated in [D5.1], despite them not delivered within
the M12 release. For each feature, it is described the innovation it brings, its architecture (within
the overall Runtime Layer), its main functional characteristics, its current implementation status,
the analysis of the code quality and its planned development steps for next releases (M30 and
M36). Table 2 summarizes the main new features introduced in M24 for the main Runtime Layer
components, namely the orchestration, monitoring and refactoring components, which are further

described in following subsections.

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version
© Copyright Beneficiaries of the SODALITE Project

Page 15

https://github.com/adaptant-labs/edgetpu-exporter
https://github.com/adaptant-labs/edgetpu-exporter
https://sonarcloud.io/dashboard?id=adaptant-labs_edgetpu-exporter
https://sonarcloud.io/dashboard?id=adaptant-labs_edgetpu-exporter
https://sonarcloud.io/dashboard?id=adaptant-labs_edgetpu-exporter
https://hub.docker.com/repository/docker/adaptant/edgetpu-exporter
https://hub.docker.com/repository/docker/adaptant/edgetpu-exporter
https://github.com/skydive-project/skydive-flow-exporter/blob/master/prom_sky_con
https://github.com/skydive-project/skydive-flow-exporter/blob/master/prom_sky_con
https://github.com/skydive-project/skydive-flow-exporter/blob/master/prom_sky_con
https://github.com/skydive-project/skydive-flow-exporter/blob/master/prom_sky_con
https://github.com/skydive-project/skydive-flow-exporter/blob/master/prom_sky_con
https://hub.docker.com/r/sodaliteh2020/prometheus-skydive-connector
https://hub.docker.com/r/sodaliteh2020/prometheus-skydive-connector
https://hub.docker.com/r/sodaliteh2020/prometheus-skydive-connector
https://github.com/SODALITE-EU/ipmi-exporter
https://github.com/SODALITE-EU/ipmi-exporter
https://github.com/SODALITE-EU/ipmi-exporter
https://sonarcloud.io/dashboard?id=SODALITE-EU_ipmi-exporter
https://sonarcloud.io/dashboard?id=SODALITE-EU_ipmi-exporter
https://sonarcloud.io/dashboard?id=SODALITE-EU_ipmi-exporter
https://github.com/SODALITE-EU/refactoring-ml
https://github.com/SODALITE-EU/refactoring-ml
https://github.com/SODALITE-EU/refactoring-ml
https://sonarcloud.io/dashboard?id=SODALITE-EU_rule-ml-based
https://sonarcloud.io/dashboard?id=SODALITE-EU_rule-ml-based
https://sonarcloud.io/dashboard?id=SODALITE-EU_rule-ml-based
https://sonarcloud.io/dashboard?id=SODALITE-EU_perf-predictor-api
https://sonarcloud.io/dashboard?id=SODALITE-EU_perf-predictor-api
https://sonarcloud.io/dashboard?id=SODALITE-EU_perf-predictor-api
https://sonarcloud.io/dashboard?id=SODALITE-EU_perf-predictor-api
https://hub.docker.com/r/sodaliteh2020/rule_based_refactorer
https://hub.docker.com/r/sodaliteh2020/rule_based_refactorer
https://hub.docker.com/r/sodaliteh2020/fo_perf_predictor_api
https://hub.docker.com/r/sodaliteh2020/fo_perf_predictor_api
https://github.com/SODALITE-EU/refactoring-ct
https://github.com/SODALITE-EU/refactoring-ct
https://github.com/SODALITE-EU/refactoring-ct
https://sonarcloud.io/dashboard?id=SODALITE-EU_refactoring-ct
https://sonarcloud.io/dashboard?id=SODALITE-EU_refactoring-ct
https://sonarcloud.io/dashboard?id=SODALITE-EU_refactoring-ct
https://github.com/SODALITE-EU/refactoring-option-discoverer
https://github.com/SODALITE-EU/refactoring-option-discoverer
https://github.com/SODALITE-EU/refactoring-option-discoverer
https://github.com/SODALITE-EU/refactoring-option-discoverer
https://sonarcloud.io/dashboard?id=SODALITE-EU_refactoring-option-discoverer
https://sonarcloud.io/dashboard?id=SODALITE-EU_refactoring-option-discoverer
https://sonarcloud.io/dashboard?id=SODALITE-EU_refactoring-option-discoverer
https://sonarcloud.io/dashboard?id=SODALITE-EU_refactoring-option-discoverer
https://hub.docker.com/r/sodaliteh2020/refactoring_option_discoverer
https://hub.docker.com/r/sodaliteh2020/refactoring_option_discoverer
https://hub.docker.com/r/sodaliteh2020/refactoring_option_discoverer

Project No 825480.

¥ Sodalite

Component

Feature

Status

Orchestration

HPC Driver

HPC driver implementation for SLURM/TORQUE
schedulers. Integration with the orchestrator.

laC Data Management

Partial implementation of TOSCA libraries that
support publishing to and consuming data from
local filesystem, S3, GCS and GridFTP

Monitoring

Dynamic Monitoring

Dynamic registry of monitoring exporters.
Integration with the main monitoring engine.
Ansible playbooks to register/deregister exporters.

HPC Monitoring

Jobs status and consumed resources metrics for
SLURM/TORQUE/PBS Pro schedulers.

EDGE Monitoring

Exporters for Edge TPUs and Intel NCS2 Neural
Compute Sticks developed and integrated. Partial
implementation of others (e.g. integrated NVIDIA
Tegra GPUs)

Skydive Monitoring Skydive-prometheus-connector developed and
integrated.
Alerting Rule File Server and APl implemented and

integrated with the monitoring engine. Partial
implementation of Alert Manager and integration
with the monitoring engine.

Refactoring

Deployment Refactorer

Architecture design. Initial implementation of the
policy-based deployment adaptation, validated in
with three key scenarios from the Vehicle loT use
case. Implementation of the building performance
models for enabling deployment configuration.

Node Manager Refactoring

A prototype of Node Manager was implemented
and evaluated on the Azure public cloud using four
benchmark applications: Skyline Extraction from
Snow UC, ResNet, GooglLeNet, and VGG16.

Refactoring Option
Discoverer

Resource matchmaking: logical expressions on the
constraints on node properties can be used to
select the nodes, nodes are discovered by
matching the requirements of the source node
with the capabilities provided by the candidate
target nodes, resource matchmaking based on
policies.

Table 2 - Runtime Layer main new features

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version

© Copyright Beneficiaries of the SODALITE Project

Page 16

94 .
{ } Project No 825480. ’SOdallte

4.1 Orchestration - HPC Driver (ALDE)

4.1.1 Innovation

ALDE (Application Lifecycle Deployment Engine) is a component of the Orchestrator which
functions as a driver for HPC environments. Whenever a project requirement is in need to execute
HPC workloads, ALDE is the component that drives to execute the operations. Since ALDE it is an
outcome of the TANGO™ project, it was required to adapt the code to the specific requirements of
SODALITE and that has been the one main key aspect about ALDE that has been innovated along
the year. Before the fork creation from the TANGO project repository®®, ALDE could deploy
SINGULARITY containers in SLURM-based HPC environments already, but SODALITE required to
extend the support to TORQUE-based. TORQUE is a scheduler used to orchestrate and
administrate the jobs queued in HCP clusters and from now one ALDE supports both schedulers
engines: TORQUE and SLURM.

Moreover, new auto-discovery features have since been included in ALDE. Since the support for

different sorts of environments has increased in scope, it was required to adapt the discovery of
the resources available in new HPC environments.

4.1.2 Architecture

Because ALDE requires an initialization setup in order to have administrative permissions to
execute workload in the HCP environments. An ALDE server instance is being deployed as is shown
in Eigure 2. Once the initial configuration is done ALDE is fully operative using its REST APl interface.

WPS5 - Runtime Layer ALDE-related Architecture Overview

SODALITE IDE

“
.
.
¥
use

Orchestrator ,J

Orchestrator i
<<REQTP>
API

use

ALDE %
<<REQT>>
AP

'
.
v

use
.
'

Figure 2 - ALDE component within the orchestrator architecture

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 17
© Copyright Beneficiaries of the SODALITE Project

94 .
{ } Project No 825480. ’SOdallte

4.1.3 Features

ALDE capabilities or features haven’t changed in scope nor its core architecture inside the
Orchestrator. As it was written in the D5.1 documentation version, the main ALDE capability is to
deploy and execute applications onto the supported HPC workload environments. Based on this
point, functionalities of the ALDE software have been extended to support TORQUE schedulers and
are presented in the following status section. Nonetheless, as an outcome of this implementation,
ALDE extended a feature that wasn't present before. New auto-discovery features have been
included in order to adapt to the new upcoming challenges considering multiple HPC Schedulers
setups.

At the beginning of the ALDE setup. It executes a resource inventory procedure to identify the
accessible resources available. This information could be required for the scheduler as a
preventive measure to not overbook the resource capacity of the HPC environment during the
scheduling time.

4.1.4 Status

@ ExecutionConfiguration

execution_type: SINGULARITY:PM | SINGULARITY:SRUN | SLURM:SRUN _.. © SEENily
command 1 *
num_nodes
num_gpus_per_node
num_cpus_per_node
exec_time
launch_execution

execution_type
status

output

batch_id

\ @ Deployment

status
path # of img in frontend |

LTS,

@ Executable © Testbed @ ”
T Node
@Appllcatlon 1 % status name 1%
T singularity_image_file #path of img online: boolean — [lcpu
application_type executable_file # path of script category: SLURM | TORQUE [Imemory
— compilation_type protocol: 55H | LOCAL [lapu
compilation_script endpoint

Figure 3 - ALDE data model structure

To adapt ALDE to the features required in SODALITE it was needed to modify ALDE data model
(Eigure 3) and include the following changes in the software:

Testbed: An HPC testbed, managed by SLURM or TORQUE workload manager. By enabling this,
ALDE can select the functionality to interface the administration of the workload to the
Testbed environment.

Node: Definition of nodes in the testbed. ALDE gets the nodes from the workload manager and
can connect to the nodes to get additional information. It was extended to auto-discover
new resources such as new types of GPU cards and processors.

Deployment: Creating a deployment triggers deployment of an Executable (i.e., the
SINGULARITY image in the ALDE server) to the frontend node. The result is that the image in
the ALDE server is copied to the frontend node. As with the Executable, the Deployment can
be created posting all the information, so the file is not copied to the frontend node, but
the request already contains the path in the node where an image is stored. Moreover, the
interface of the deployment is adapted based on the Testbed (HPC environment) where

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 18
© Copyright Beneficiaries of the SODALITE Project

94 .
{ } Project No 825480. ’SOdallte

applications are being executed, that is, to extend the functionality of the workload
administration based on the Testbed category (TORQUE or SLURM).

On the other hand, ALDE project has been integrated with the ClI (Continuous Integration)
methodology to automatically integrate new versions to the DockerHub repository whenever
newer versions are available. By using Jenkins, a script located inside the ALDE repository
builds, tests and publishes a Docker version whenever a release is being made in the ALDE
repository. The innovation is to feature container-based deployments of ALDE and to shorten
the development cycle of the component by ramping up the integration software stage.

Lastly, a xOpera blueprint has been made to interface the Orchestrator with ALDE. The blueprint
can deploy new applications setups easily by including the required configuration steps when
a new application setup is made in ALDE.

4.1.5 Code Quality

Code quality report for the ALDE code is shown in Figure 4. This report shows some issues that will
be investigated and removed in the next release.

SODALITE - Application Lifecycle Deployment Engine
Last analysis: January 15, 2021, 2:27 PM

0Q 0Q 0.0% @ “Q O 87.5% O oo% %@

¥E Bugs B Vulnerabilities @ Hotspots Reviewed & Code Smells Coverage Duplications Python
Figure 4 - Code quality report for ALDE

4.1.6 Next steps

ALDE and the Orchestrator are fully integrated via a TOSCA blueprint. In a PoC performed the
blueprint was executed with the Orchestrator and it had proved to deploy a SINGULARITY container
to the HPC environment, ALDE did manage to schedule the workload until its completeness.

4.2 |aC Data Management

The components of heterogeneous applications are deployed across various execution platforms
and utilise the capabilities of the platforms. As such, one component can utilise HPC resources for
better performance of batch computation, while another - Cloud resources for better scalability
and elasticity. Furthermore, this is also a possibility of processing on Edge devices. The usage of
such hybrid setup, where dependent components of the applications are deployed across various
platforms, might require data transfers from one platform into another and the orchestration
system must support them. As part of a collaboration with RADON project we explore the
possibilities of data transfers between application components deployed across multiple
infrastructure targets.

4.2.1 Innovation

From the requirement elicitation done during Y2, there is a need for a portable and scalable way
to connect loosely coupled application components deployed on various platforms and perform
data movement between them. As an example, consider a production HPC infrastructure, where
strict firewall rules are applied and a number of available ingress endpoints for data management
is often limited to GridFTP file transfer protocol. Moreover, egress connectivity from the
infrastructure to the Internet is often blocked for security reasons, hence directly obtaining data
from external repositories, data services or cloud storages is not possible. For such cases, there

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 19
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. /’ SOdalite

exist state-of-the-art technologies and tools that provide adaptivity between various interfaces for
data management.

Scientific and research communities have developed services for unified data management as a
consequence of a federation of infrastructure and service providers that offer different cloud
storage technologies and different file transfer protocols. Services, such as Globus*, Onedata’® and
DynaFed", provide a unified data access for federated providers as well as external providers, e.g.
Amazon S3 and Microsoft Azure. While Onedata and DynaFed are open source and freely extendable,
Globus' support for connecting with Cloud storage backends is a premium feature.

Furthermore, there has been a development for the multiprotocol data management services.
FTS3' is a data movement service for data transfers between various storage systems. It is based
on GFAL2" multiprotocol data management library and any combination of the protocols, such as
GridFTP, SRM, S3, HTTP(S), WebDAV and XrootD, can be used. This allows to schedule a file transfer
between cloud storages, Grid and HPC systems. Rucio®” is a framework for data management
across globally distributed locations and across heterogeneous data centers. It unifies different
storage technologies into a single federated entity and utilises FTS3 as a middleware for
multiprotocol connections.

With the respect to data management for multi-cloud storage, rclone® provides a command line
tool for synchronisation of files across different cloud storage providers, such as S3, Dropbox, GCS
as well as different protocols, such as HTTP, (S)FTP, WebDAV. Zenko? is a multi-cloud storage
controller, which exposes an S3-compatible API for data management across private and public
clouds, such as S3, Azure, GCS and Ceph. SODA foundation® provides a cloud vendor agnostic data
management for hybrid cloud, intercloud or intracloud and also exposes S3-compatible API for
management of various cloud providers, such as Azure, GCS, S3, as well as Ceph.

With the emergence of Edge computing, IoT and serverless platforms, data processing shifted
towards handling data streams, and thus several data stream platforms and data flow services
have been developed. MQTT* is an OASIS standard messaging protocol for the IoT. It is designed as
a lightweight publish/subscribe messaging transport for connecting remote devices with
constrained resources. Mosquitto®” and HiveMQ*® are some of the implementations of MQTT. Apache
Kafka®" is a distributed stream processing platform that allows to publish/subscribe to and persist
streams of events, including continuous import/export of data from other systems (such as S3,
Azure, FTP, GCS, SQL, HDFS, etc.) or real-time applications via Kafka Connect. Fledge® is an loT
platform, and it acts as a gateway between edge devices and cloud storage systems. It currently
provides plugins for some platforms and protocols, such as Apache Kafka, GCS, HTTP, EdgeX.
MinlO? is a Kubernetes native, S3-compatible object storage. It provides an alternative version that
can be deployed on edge. Data flow services, such as Apache NiFi*° and StreamSets™, also provide
rich support for data management between various cloud storage vendors (S3, GCS, Azure, etc.)
and streaming platforms (Kafka, MQTT).

From the current SOTA, it can be seen that the current data management services found in
scientific communities mostly focus on HPC and cloud storage platforms and do not cover edge,
loT and serverless platforms. Inversely, it is true that edge and serverless platforms target stream
and cloud platforms, but do not target HPC platforms. Therefore, in order to satisfy the
requirements of use case owners and to meet the SODALITE objectives for supporting
heterogeneous infrastructures, data management for mentioned platforms shall be provided. As
part of the collaboration with RADON* project, we study the feasibility of using data pipelines as
components to unify data management between various heterogeneous platforms. As an

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 20
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. /’ SOdalite

innovation, SODALITE extends RADON’s TOSCA and laC libraries for data pipeline
management, which currently target multi-cloud storage and serverless platforms, with
GridFTP support - a common file transfer protocol used in HPC. This enables an interoperability
between HPC, Cloud storage types and data streams.

4.2.2 Architecture

The RADON project has developed a set of standard TOSCA libraries® for lifecycle management of
data pipelines, which is inline with laC-based orchestration in SODALITE. The concept of data
pipeline allows composition of application components (e.g. microservices, serverless functions or
self-contained components) as independently deployable and scalable pipeline tasks with the data
movement and possible data transformation between the components®. As an underlying
technology for data pipelines, Apache NiFi service is used. It exposes a REST API for data flow
management between pipeline elements (blocks) and also provides connectors to various
platforms and storage systems, such as S3, GCS, Azure, Apache Kafka, HDFS, MQTT, HTTP, (S)FTP,
etc. This enables fetching data from one storage provider and pushing data to another provider as
a pipeline task.

In the context of the SODALITE and RADON collaboration D7.4*>, SODALITE reuses RADON's
libraries for data management and extends them to support data transfer protocols common in
HPC, such as GridFTP. Eigure 5 depicts an overview on data pipeline management from SODALITE's
perspective. The Orchestrator exposes a REST API for deployment of a CSAR (Cloud Service
Archive), which contains a TOSCA application topology description along with TOSCA node types,
laC and other dependencies. The application topology must specify pipeline blocks and
connections between them, as well as specify which NiFi instance to use and whether the
orchestrator must create a new instance or use the existing instance of NiFi. On the lower level, to
instantiate a pipeline block, the orchestrator uses NiFi REST API to upload a NiFi XML template that
describes the pipeline block. NiFi then registers the template and returns the ID of the pipeline,
which in turn is used by the Orchestrator to request NiFi for the pipeline execution. Same happens
for every pipeline block in the application topology. At this point, the registered pipeline blocks are
established and functional, and the Orchestrator relies on NiFi instances to perform data
movements between the pipeline blocks or move data to a certain storage system as a pipeline
task.

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 21
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

Orchestrator

[] REST API
CSAR '.

deploy

SODALITE
Orchestrator

upload NiFi
Create templates & run
NiFi
instance

NiFi
REST API

Establish pipeline blocks and connectors

1§
r _.-"— '_ _/'—\._ _/-—\H._ -‘I
| Pipeline Pipeline - Pipeline: -
Block 1 Block 2 Block N
: = . : : ; : : :
110 ilﬂ: ilﬂ:
. . 4 .

-,
(S)FTP GDGg'E Cloud HTTP
\ GridFTP Storage /

Figure 5 - 1aC data pipeline management architecture

As a brief background to the data pipeline approach used in RADON, an outline of its architecture
and components is presented in Eigure 6. A PipelineBlock is an entity that executes pipeline tasks,
such as data processing, API calls invocation, fetching data from or pushing data to remote storage
systems or stream platforms, etc. The PipelineBlock may contain input (DatalngestionQueue) and
output (DataEmissionQueue) queues for buffering input and resultant data. Using these queues,
multiple PipelineBlocks can be connected sequentially, forming a group of PipelineBlocks.
Similarly, multiple groups can also be connected using InputPipes - gateways for receiving input
data from the previous group or external data source, and OutputPipes - for forwarding resultant
data to the next group or external data sink.

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 22
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

PipelineBlock

7

| i III InputPi —_— | Datal i |
= —} |
|, end-point | nputHipe —r-i nges nonQuenei

\ \ =

L4
Pipeline task

.

Pipeline task

.

|

Pipeline task

B SE

! |
|

|I | |
| en[d)?ptzim | e——— OutputPipe 1—_!DataEmi55ionQueuei

\ \
\
S,

Figure 6 - Architecture of data pipeline [D5.5]

4.2.3 Features
The laC data management features are limited to the capabilities and functionalities offered by
Apache NiFi. We mainly focus on utilising NiFi for multi-protocol and multi-platform data
movement, abstracted in TOSCA and laC. Current structure of featured TOSCA node types for data
pipeline blocks is presented in Figure 7, and they can be categorised into four classes of pipeline
blocks and can be extended:
1. Source pipeline blocks - for consuming data from a data endpoint (e.g. HTTP, FTP, S3, GCS,
Kafka, MQTT).
2. Destination pipeline blocks - for publishing data to a data endpoint (e.g. HTTP, FTP, S3,
GCS, Kafka, MQTT).
3. Midway pipeline blocks - for executing data processing tasks (e.g. local data processing,
invoke serverless FaaS).
4. Standalone pipeline blocks - for performing independent activities (e.g. copy from S3 to
S3).

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 23
© Copyright Beneficiaries of the SODALITE Project

94 .
{ } Project No 825480. ’SOdallte

| radon.nodes.abstract.DataPipeline

PipelineBlock
SourchB MidwevEE DestinationPB Standalone
v ¥ 7¢ P
. L 7 z > copy_s3_s3
ConsumeDataEndPoint | LocalAction | |“ Acti ‘ ‘ RouteToR ‘ PublishDataEntPoint L;
| = (> copy_s3_dynamodb
& { _1 [~ copy_dynamodb_s3
e G = PublishRemote PublishLocal > ShellCommandActivity |
) I 3 ——>/SqlActivity
T J ! GenericFaaS InvokeLambda [InvokeOpenFaas| PubsSBuckel] s > PigActivi
FTP | S3Bucket GenericSource _’
ol F'uhquTT‘ ‘GenericDeslinalinn‘
» ConsGCSBucket
. - Deonpt
- - ExcouCammand
(-» ExecutePython
B ExecuteRuby

Figure 7 - A hierarchy of featured TOSCA node types

4.2.4 Status

Currently, TOSCA libraries that support publishing to and consuming data from local filesystem,
S3, GCS and GridFTP are under development, and can be found in the joint RADON-SODALITE

organisation: https://github.com/RADON-SODALITE.

4.2.5 Code Quality

The repositories contain laC, which is not currently covered by SonarCloud, therefore code quality
cannot be reported.

4.2.6 Next steps

As a next step, further development and integration into the SODALITE platform is planned. As
such, we plan:
e to extend the TOSCA libraries to further support other platforms and protocols, such as
(S)FTP, HTTP(S) and Apache Kafka, and evaluate data pipeline approach with use cases;
e to have an instance of Apache NiFi running on the SODALITE Cloud testbed as a data
management service;
e tointegrate Apache NiFi instances with the IAM and Secret Management components.

4.3 Dynamic Monitoring

4.3.1 Innovation

SODALITE supports the execution of complex applications, consisting of components and/or batch
processes, which are deployed into a mixture of infrastructures, including Cloud, HPC or EDGE. One
of the defining features of these applications is their ability to dynamically acquire and release
computing and networking resources, depending on their specific needs during their runtime. The
runtime adaptation requires the analysis of the metrics that describes the behaviour of the
application components and their consumed infrastructure resources, which are dynamically
allocated/released at runtime. These metrics as collected by probes (or exporters in monitoring
terminology), which must be instantiated and configured with the same dynamicity as the
application components and associated resources are.

The purpose of dynamic monitoring is the runtime allocation of monitoring probes that collect
runtime metrics of target application components, their execution environments and allocated
infrastructure resources, hence. As the application deployment may be refactored at runtime,

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 24
© Copyright Beneficiaries of the SODALITE Project

https://github.com/RADON-SODALITE

9% .
{ } Project No 825480. ’SOdallte

resulting in dynamic redeployment and reallocation of resources, dynamic monitoring is not only
required at deployment time, but eventually at any point of the application execution at runtime.

The SODALITE monitoring system, based on Prometheus® as the main monitoring engine, does not
support this level of dynamical allocation and release of probes (see [D5.1] for a state of the art
analysis of monitoring approaches). Although Prometheus supports the specification of probes that
collect runtime data from their associated targets, this needs to be pre-configured before enabling
monitoring.

Therefore, a technical innovative redesign of the monitoring system is required. This is achieved by
adopting Consul® (see following paragraphs for further description of this component) as a
dynamic registry of monitoring probes, a registry that is consulted by Prometheus when it is
notified of probe changes. This approach is complemented with a mechanism that permits
exporters to register themselves dynamically in the monitoring registry when their activation is
required by the orchestrator.

4.3.2 Architecture

The dynamicity of the monitoring system relies on its capability of getting automatically aware of
any change in the execution environment and infrastructure resources used by an application. This
behaviour is achieved by making the different exporters supported by the monitoring system (/PMI
exporters, Node exporters, Skydive exporters and HPC exporters) to register itself in a Consul server
using the API it offers for that, as Figure 8, which depicts the complete SODALITE monitoring layer
architecture, shows.

The Prometheus component also makes use of the Consul API, since it is configured to scrape
metrics from any exporter of the aforementioned types that have been previously registered in
Consul. Let us note that Consul® describes itself as a mesh solution for monitoring services in
clusters and, as a mesh solution, it was thought to work as a federation of servers and agents
running in the distributed premises of the underlying infrastructure. However, just a single Consul
instance acting simultaneously as server, local agent and cluster leader is enough for our
requirements. Regarding the metrics scraping itself, all the exporters offer an API to which the
Prometheus component launches HTTP requests to collect data.

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 25
© Copyright Beneficiaries of the SODALITE Project

94 .
{ } Project No 825480. ’SOdallte

WP5 - Monitoring Layer Architecture Qverview
SODALITE
IDE
-7 p—"
+use ™ link
Mnnitnringf‘ ¥
«REST: E'Y
% a 1
Rule File Server «Dashboards Grafana
RuleAP| -
¥ :
\use - Use
4 .
4 il
“REST»
g
MonitofingAP1
a] [
Orchestrator «Maniterings Prometheus Refactoring
‘_\‘.h n ‘a_\ s '___.—-'
™~ _subscribe ruse : TNy use R “esubscribe
\\\« £T ! -l—-"r"n'fs'r;-_r_-
[m] &E D e it
Alert Manager - e
AlertingAP(Xporti .
v //E e
&E o0
== ==~ " / \ B~
i ¥ g x""‘u._,__
: O) O Of (]’
Consul IPMI Exporter HPC Exporter Mode Exporter Skydive Exporter K8s Exporter
- p—— ____JV-- - e T T
oo . e R am 5 e ' i
&) - - & - \ f
T [register » fnegaster/ - 7 register Yo - = Tregister \ i :
- \ b e gt Y ' s b i
\\‘PE ,o,’.’ __’_-"_ 1 N A t 1
kS = e ' \ . i i
3 { scrape \ scrape ‘., scrape I'sc:rape :scrape
1 \
ConsulAPI \ ' 3 1 |
\ | |
T ¥ T
e i - g I |
¥ Ny ¥
HPC(Torque) D | Cloud(OpenStack) D | EOGE({Kubernetes) D

Figure 8 - Monitoring Y2 architecture

4.3.3 Features

Dynamic monitoring adapts the number, type and configuration of probes (i.e. exporters) required
to collect monitoring metrics from a target deployed application, the execution environment
where it is being executed and the infrastructure resources it uses. Current implementation of
dynamic monitoring supports the dynamic allocation of exporters and their registration within the
monitoring system upon their initialization. It also supports them to decomiss themselves when
they cease on their activity (e.g. they may quit collecting metrics when they detect the target
application has been terminated).

4.3.4 Status

Figure 9 shows the status of main Monitoring components, compared to the situation reported in
D5.1. This figure distinguishes among:

e components not updated since D5.1, in grey,
e components updated since D5.1, in orange,
e new components developed, in green.

What concerns this feature, a new component, Consul, has been adopted and incorporated to the
SODALITE architecture. The main monitoring component, Prometheus, has been reconfigured to
obtain the list of exporters from Consul, and these exporters have been reconfigured to register
themselves, upon their initialization, into the Consul instance. The K8s Exporter for EDGE can

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 26
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

optionally register itself in Consul (or be discovered indirectly, through the Consul-K8s Service
Sync®), although it is not strictly required as Kubernetes-based exporters are automatically
detected and scraped via pod annotation.

- power I
Physical consumption IPMI

node Exporter

77777777 1 -
|
A

I

CPU & memory 1 I

Cloud usage Node !
|

I

|

VM Exporter

" -

I

total bytes network — l
connection Skydive I
: T

I

I

Skydive

frontend

EDGE pod metrics : - New
pod Updated

Figure 9 - Monitoring Y2 status (extension of Figure 16 from [D5.1])

A

Y
77777777 |

: _

HPC user jobs metrics _ |
T
I
I

In D5.1, the Prometheus instance of the SODALITE architecture was deployed in a VM inside the
OpenStack cloud testbed. It was prepared to automatically discover and monitor OpenStack
resources thanks to a specific configuration hook* of Prometheus. Endpoints for other kinds of
exporters had to be previously known and set in the configuration file. This was the case of the IPMI
and Skydive exporters also supported in that initial version. In this current version the Prometheus
is not responsible anymore of keeping a list of monitoring targets, this task being delegated to the
Consulinstance.

Consul offers a REST API through which services can be registered, the properties of each service
being specified in a JSON file passed along with the registration request. Prometheus can be
configured to retrieve exporter endpoints seamlessly from the Consul service registry. These
exporters must have been previously registered, what can be done by the exporters themselves
after they are started. This can be done at this point since just a service name, a unique identifier,
the address and the port of the exporter endpoint has to be included in the JSON file*? in order to
properly register the exporter as a service. Analogously, exporters can remove themselves when
stopped. In both cases, the Prometheus instance is kept aware of any change with neither server
restarting nor configuration file reloading.

4.3.5 Code Quality

Code Quality cannot be reported neither for Prometheus nor for Consul, as they are third-party
components, developed by external teams, which have been incorporated to the SODALITE
monitoring layer and integrated to each other. The developments done by the SODALITE team in
order to integrate and deploy them within the Runtime Layer are mostly related to their mutual
integration, and their automatic configuration and delivery, based on TOSCA blueprints and
Ansible playbooks, which are not analysed by SonarCloud. They are part of the monitoring-system
repository”, whose QA report is presented in Figure 10.

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 27
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. /’ SOdalite

monitoring-system

Last analysis: January 6, 2021, 11:21 AM

0 ® 7@ 0.0% @ 0® O 0.0% 64 ®

¥¥ Bugs 6 vulnerabilties @ Hotspots Reviewed & Code Smells Duplications Python
Figure 10 - Code quality report for Monitoring

4.3.6 Next steps

Consul and Prometheus instances are fully integrated with the other components of the Monitoring
Layer, and they can be deployed from TOSCA blueprints by the Orchestrator. The feasibility of this
approach has been confirmed in an proof of concept (PoC) implemented in the OpenStack testbed,
which installs in a VM (by using the orchestrator, configured with TOSCA blueprints and Ansible
playbooks) instances of Consul, Prometheus, and a Node Exporter that registers itself upon
initialization. All the blueprints and playbooks needed for deploying that PoC are available in the
consul-registration-poc/openstack folder of the SODALITE-EU/monitoring-system* repository.

However, full automation of the registering and deregistering processes for all the exporters
available (IPMI exporters, Node exporters, HPC exporters and Skydive exporters) is still ongoing:

e Registration of Skydive exporters is tentatively supported by means of a TOSCA blueprint®
run by the Orchestrator to deploy the SODALITE platform stack.

e Regarding the Node exporters, the current playbooks for creation and destruction of VMs of
different cloud providers must be updated to install/register and to deregister the exporter,
following the example* included in the aforementioned PoC.

e Several integration issues related to the lifetime, scope, number and containerization of
HPC exporter instances that must run for each application are preventing for the moment
the automation of its registration process.

4.4 HPC Monitoring
4.4.1 Innovation

Monitoring the execution of HPC jobs is required to tune the behaviour of HPC-based applications
on the pursuit of maximizing their performance and throughput. In the HPC realm, job monitoring
is supported by the specific scheduler, but restricted to be manually consulted by the job owner or
the administrator of the HPC cluster*” *®. As the main objective of HPC environments is to achieve
the maximum job performance with the existing computational resources, no monitoring services
are installed in the background. Moreover, there are no installed dashboard-based solutions to
monitor the status of submitted jobs and visualize their allocation and consumption of
computational resources, aggregated (or filtered) by job, by composition of jobs, by user, by
queue, or by another view that could be required by the user.

The innovative aspect of this approach is the adoption of external®, dynamical® HPC probes,
integrated within a multi-infrastructure target monitoring layer, that collect and aggregate metrics
about the execution status and consumed resources of target jobs. Other similar external
monitoring approaches (e.g. as presented by R6hI*) neither dynamically configure HPC probes for
multi-targeted HPC infrastructures nor are integrated within a hybrid monitoring approach that
aggregates metrics from HPC, Cloud or EDGE.

The ability of monitoring multiple HPC clusters, regardless of the adopted scheduling technology,
is another innovative feature offered by this approach.

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 28
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. /’ SOdalite

4.4.2 Architecture

As Figure 8 shows, the HPC monitoring capabilities rely on HPC exporters able to scrape metrics
from HPC infrastructures. These exporters query the monitoring utilities of the schedulers of the
target HPC infrastructures and use the information obtained to compose and expose metrics. Once
registered as services in the Consul component, the Prometheus server can scrape metrics from
them.

4.4.3 Features

The HPC exporter collects metrics about different aspects of HPC infrastructure usage from both
performance and cost viewpoints: job status, CPU and wall time consumption, physical and virtual
memory consumption, energy consumption, traffic for I/0 and network communications, etc.
Different types of HPC job schedulers are supported, starting with PBS Professional and SLURM in
the current implementation.

4.4.4 Status

The current HPC exporter (available in SODALITE-EU/hpc-exporter®” repository) is a tool
implemented in Go which is able to connect to frontends of HPC infrastructures and give
information about the status, the consumption of time (CPU, wall) and memory (virtual, physical)
for a list of jobs launched by a given user in a given HPC infrastructure. The tool opens an SSH
connection to the corresponding frontend, launches PBS Professional or SLURM commands
(depending on the scheduler available in the monitored HPC infrastructure) commands through
that connection and parses their output to obtain the desired metrics. By means of the Go client
library for Prometheus, these metrics are formatted and exported through a valid endpoint.
Separate instances of the exporter can run directly by launching different instances of the tool
executable, or by building the Docker image specified in the Dockerfile provided and running
multiple instances of it in several containers.

4.4.5 Code Quality

Code quality report for the HPC exporter code is shown below. This report (Figure 11) spots some
code duplication that will be investigated and reduced for the next release.

hpc-exporter

Last analysis: January 7, 2021, 1:41 PM

0® 0 ® 100% @ 27 @ 5.9% 1.1k @
Go

i Bugs 6 Vulnerabilties "] Hotspois Reviewed & Code Smells Dupiications

Figure 11 - Code quality report for HPC exporter
4.4.6 Next steps
In its current state, each instance of the HPC exporter is able to monitor a given list of target jobs,
submitted by a user in a HPC infrastructure. Further research is needed in relation to the number of
the HPC exporters each application needs, and also about their lifetime and scope. Such decisions
will affect how this tool is deployed (blueprints, playbooks, proper Docker containerization, etc.)
by the Orchestrator.

Regarding the metrics collected by the HPC exporters, by now only metrics about job status, CPU
and memory consumption are provided. Current exporter implementations for TORQUE/PBS Pro
and SLURM can be extended to query those schedulers about the number of jobs submitted to
queues, which will provide a way to estimate queues congestion.

Moreover, job status, CPU and memory consumption metrics are easy to obtain since they are
directly provided by the information commands of the HPC schedulers with no collateral effects on
the execution of the jobs themselves. Having access to metrics like I/0 and network usage or power

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 29
© Copyright Beneficiaries of the SODALITE Project

9% .
{ } Project No 825480. ’SOdallte

consumption is not so trivial, since runtime interaction with the computing nodes is needed up to
some extent, which is not usually allowed by the HPC infrastructure administrators and may also
affect the performance of the jobs being monitored. Further research is needed about how these
metrics can be retrieved, including the development of an ad-hoc exporter able to collect them
without affecting such a sensitive aspect of HPC infrastructure operations.

It would be also interesting to do some research about how end users could benefit from Grafana
specialized dashboards for monitoring the state of their applications running on HPC premises, for
example with different views per job, per queue, etc.

4.5 Edge Monitoring

4.5.1 Innovation

Monitoring of Edge Gateways is critical for ensuring their continued operability and to reduce the
risk of service failure arising from environmental factors such as resource limits or safe operating
thermal ranges being exceeded. As Edge Gateways are often multi-user systems, and are often
passively cooled, it is integral to have a complete overview of the system’s operating parameters at
run-time, regardless of whether these are caused directly or indirectly.

As resources in an Edge Gateway may become periodically unavailable (e.g. a resource is removed
from the cluster, or required by a high-priority application), the monitoring stack must be capable
of dynamically reconfiguring itself to match the current system state. To this extent, the current
monitoring solution integrates tightly with Kubernetes, relying on dynamic device and feature
discovery to label nodes with node characteristics that are used as a basis for determining Pod
scheduling affinity. For example, an EdgeTPU exporter may be registered once at the cluster level,
and will automatically be scheduled on any node in which an EdgeTPU device becomes available -
whether through static platform discovery (in the case of integrated devices), or dynamically at
run-time via USB hotplug events.

4.5.2 Architecture
The Edge Monitoring architecture is briefly described in Eigure 12 below:

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 30
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. /’ SOdalite

SODALITE Orchestrator SODALITE Refactorer

e

Kubernetes Master

{ AlertManager
{ Prometheus

(.

/ [/

Kubernetes Node \ mbernetes Node
[EdgeTPU Exporter J

Node Exporter (DaemonSet) Node Exporter (DaemonSet)

MQTT Exporter (OBD2)

[NCS2 Exporter]
[MQTT Exporter (OBD2)]

Application Metrics Application Metrics

Accelerator(s) Accelerator(s)

\ jQCSZ) [epu)

Figure 12 - Edge Monitoring architecture

In this configuration, a single Prometheus and Alertmanager instance is provided within the cluster,
and each Edge node is automatically instantiated with a Node Exporter instance by the Kubernetes
master. Individual exporters (e.g. for device-specific metrics) are registered at the cluster level, and
are automatically scheduled on any Edge node matching the scheduling constraints.

4.5.3 Features

The first version of the Edge Monitoring stack supports the dynamic registration of device-specific
exporters across Kubernetes nodes, and is able to handle the dynamic insertion/removal of
heterogeneous accelerators at run-time. Annotated pods are automatically scraped by the
cluster-level Prometheus instance, typically running on the Kubernetes master node, and require
no specific configuration.

4.5.4 Status

Exporters for a number of heterogeneous accelerators used by the Vehicle 10T use case have been
developed (specifically, exporters for Edge TPUs and Intel NCS2 Neural Compute Sticks) and
integrated. Others (e.g. integrated NVIDIA Tegra GPUs) require modification to existing upstream
device plugins, and the definition of customized platform-specific configurations. This work is
on-going.

4.5.5 Code Quality

The Edge Monitoring stack is composed of a number of different components, and does not provide
a single integrated package. As most of the components in the Edge Monitoring stack are written in
different languages (Golang, Python, C++), there is no single comprehensive quality metric applied
- each component is ultimately responsible for monitoring its own quality. Components that do
provide quality metrics (e.g. the Go Report Card for Golang-based components) provide this as part
of their documentation in their respective repositories.

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 31
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

The SonarCloud code quality report for the corresponding exporters are provided in Eigure 13:

prometheus_ncs2_exporter NEW PUBLIC
Last analysis: January 20, 2021, 12:32 PM
0Q 0Q® 100% @ 0® O 0.0% 196 @
¥¥ Bugs B Vuinerabiliies @ Hotspots Reviewed & Code Smells Duplications Python

Figure 13 - Code quality report for the corresponding exporters

edgetpu-exporter NEW PUBLIC
Last analysis: January 20, 2021, 12:38 PM

0® 0Q 100% @ 0 ® QO 0.0% 166 @

¥¥ Bugs B Vulnerabilities @ Hotspots Reviewed & Code Smells Duplications Go

Figure 14 - Code quality report for Edge Monitoring components

4.5.6 Next Steps

The next steps will be to: (1) create node-local instances of Prometheus/Alertmanager to allow for
finer-grained alerting and monitoring, while allowing a cluster-level Prometheus/Alertmanager
instance to federate the node instances for cluster-wide dashboards and monitoring; and (2) allow
for the dynamic discovery and registration of platform-specific alerting rules (e.g. different Edge
Gateways may expose CPU or GPU monitoring data via different hard-coded thermal zones, which
should be transparent to the monitor).

4.6 SkyDive Network Monitoring

4.6.1 Innovation

Various monitoring tools provide network metrics™. One of the distinguishing features of Skydive is
that it understands the topology of how entities are connected in the network and it has the
capability to identify individual network flows from specific network connections. This enables a
user to trace how a flow travels through the network topology and to identify where there might be
potential problems that require attention. The skydive-prometheus-connector” is a recent add-on
to Skydive to export data from captured flows for allowing easy consumption by Prometheus. The
skydive-prometheus-connector is built upon the skydive-flow-exporter® infrastructure.

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 32
© Copyright Beneficiaries of the SODALITE Project

{H*} Project No 825480. ? SOdalite

4.6.2 Architecture

Skydive
Skydive Analyzer Prometheus
Connector

Skydive Agent
Prometheus Server
; Host
Skydive Agent Pull Metrics

Host Node Exporter

Node Exporter

Figure 15 - Skydive-Prometheus Connector

A Skydive agent runs on each host that is being monitored to collect the network monitoring
information that is requested. The data from the various Skydive agents is sent to the Skydive
Analyzer to be collected and managed. The skydive-prometheus-connector extracts the relevant
information from the Skydive Analyzer and converts it into a format that is consumable by
Prometheus.

4.6.3 Features

The first implementation of the skydive-prometheus-connector provides the byte transfer counts
plus metadata for each network connection under observation. This information, probed
periodically, can be used to calculate the rate of data transfer per network connection. The code
can be easily extended to provide additional metrics that are found to be useful.

4.6.4 Status

The skydive-prometheus-connector was recently pushed upstream to the Skydive Github
repository®’. A blog® was prepared with detailed instructions and examples of using the
skydive-prometheus-connector. A blog® was also published describing the more general usage of
the skydive-flow-exporter. The skydive-prometheus-connector and Skydive analyzer were recently
incorporated into the SODALITE platform deployment blueprint®.

4.6.5 Code Quality
Code Quality for Skydive and its extensions cannot be reported, as they are third-party
components, and they do not provide the SonarCloud statistics.

4.6.6 Next steps

At present, the network metrics are simply reported, but no action is taken based on the network
metrics. We aim to be able to recognize some network anomaly or bottleneck, and to be able to
recommend a change in the configuration to improve performance. In addition, data is currently

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 33
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ’ SOdalite

captured uniformly from all hosts in our configuration. The collection of such data requires some
overhead. We aim to be able to (dynamically) selectively choose where and when to collect
network data, based on detection of some anomalous behaviour, thus avoiding unnecessary
collection of most of the network data.

4.7 Alerting

4.7.1 Innovation

According to section 4.1 (Monitoring, tracing and alerting - Background) of [D5.1], the alerting part
of a system is essential because it notifies critical changes or situations, assists the operators to
have a good overview of the state of all the infrastructure, and being on top of the monitoring and
tracing parts helps to spot, mitigate and prevent problems. Despite the adopted monitoring
engine, Prometheus, enables the notification of alerts to its registered Alert Managers, upon the
detection of conditions that triggers the provided alerting rules. Then, a proper management of
those alerts and their dispatching to subscribers within the Runtime layer (notably the Orchestrator
and the refactoring components) is required.

No alerting components were described in sections 4.4 (Monitoring, tracing and alerting -
Architecture) and 4.5 (Monitoring, tracing and alerting - Development status) of D5.1, so in this
intermediate version of the runtime, the foundations of such an alerting system are established.

4.7.2 Architecture

The alerting part of the monitoring system has three main components: the AlertManager, the Rule
File API Server and the Grafana dashboard. As Figure 8 shows, these three components interact
with the Prometheus server, since it is the central repository of all the monitoring information
collected from the exporters. The Orchestrator and Refactoring parts are subscribed to the
AlertManager in order to be notified about detected changes or malfunctions in the runtime target
application behaviour so that they can analyse the need of redeployment and/or reconfiguration.
Moreover, the Grafana dashboard provides end-users with human-readable alerting information.

4.7.3 Features

The alerting part of the monitoring system is composed of an AlertManager that handles the alerts
triggered by the Prometheus server and notifies any component or actor subscribed to them. In this
case both the Orchestrator and the Refactoring part are interested in alerts, so that these
components are responsible for adapting the resources available according to any relevant change
on the infrastructure derived from the alerts triggered. These alerts are defined for each
application on rule files which are kept by the Rule File Server. This server offers a REST API that
allows the applications to register rule files in order to be evaluated by the Prometheus
component, which is properly configured to access these files. The Grafana dashboard, used to
plot and summarise the information collected in the Prometheus server, also offers its own alert
management features.

4.7.4 Status

The Prometheus and the Rule File Server are deployed on Docker containers that share a volume on
which the alerting rule files are stored. Applications register their rule files through the Rule File
API, and the server saves them in the shared volume. A path to that volume is kept in the
Prometheus configuration file. The Rule File APl Server component is intended to loosen the
coupling among the rule files lifetime and its actual enforcement in the Prometheus instance. The
aforementioned API is built on top of Flask (a lightweight WSGI web application framework), with
the requests being received and redirected to Flask® by a multithreaded instance of Gunicorn® (a
WSGI production-ready HTTP server). Since both Flask and Gunicorn are written in Python, the

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 34
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. /’ SOdalite

component is deployed using a custom Docker image based on Python3.8 one and with additional
layers for Flask and Gunicorn. This image has been uploaded as monitoring-system-ruleserver® to
the SODALITE public image registry on Docker Hub. The Dockerfile used to build the image along
with the implementation of the Flask application and its requirements are available in the folder
ruleserver of the SODALITE-EU/monitoring-system® repo, along with a README file describing the
usage of this component REST API for adding and removing rule files.

Prometheus may be configured to periodically send information about alert states to an
AlertManager instance, which then takes care of dispatching the right notifications. This
AlertManager instance is deployed in its own container using the official Docker image provided by
the Prometheus development team. This container offers an endpoint that is included in the
Prometheus configuration file in order to make the Prometheus send the alerts triggered to the
AlertManager. This reported version of the monitoring system implements the foundations of the
alerting feature, but no concrete behaviour is supported regarding notifications nor alert
operations.

4.7.5 Code quality

The code quality report for AlertManager, included as part of the monitoring-system repository®, is
reported in Figure 16. As this component is currently under development it still faces some
vulnerabilities that will be fixed for next release, once the component functionality is complete.

monitoring-system

Last analysis: January 6, 2021, 11:21 AM

0 ® 7@ 0.0% @ 0® O 0.0% 64 @

E | Bugs B Vulnerabiliies @ Hotspots Reviewed & Code Smells Duplications Python

Figure 16 - Code quality report for Monitoring Alerting

4.7.5 Next steps

By now just the foundations of the alerting system are set, since there is an AlertManager that is
able to receive alerts from the Prometheus, which, in turn, is able to enforce the alerting rule files
kept by the Rule File Server. However, no real behaviour is yet implemented.

As a starting point, it would be interesting to prepare a PoC to assess up to which extent this
alerting system could support the implementation of scaling or reconfiguration policies. A feasible
experiment could be: (1) defining an alert that is triggered when the CPU of a VM is overloaded, (2)
subscribe the Orchestrator and the Refactoring parts to such an alert through the AlertManager, (3)
force that overload in the VM (4) , and make the aforementioned parts of the system to react to the
problem by instantiating a new VM that will share the workload with the first one. If such a PoCis
successful, then real alerting files, subscriptions and reactions could be implemented for the
different use cases. With relation to that, further research is also needed about how the alerting
capabilities of the Grafana dashboard can be integrated in the alerting part of the monitoring
system.

4.8 Deployment Refactorer

According to Martin Fowler %, “Refactoring is the systematic process of changing a software system
in such a way that it does not alter the external behavior of the code yet improves its internal
structure.” Along the same lines, within the context of SODALITE, we define deployment refactoring
as the systematic process of changing the deployment model/topology of a software system without
altering the external behavior of the system. A key goal of the deployment refactoring is to improve
the overall utility and quality of the system by applying a series of small behavior-preserving
transformations to the deployment model of the system. We aim to provide the system and

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 35
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. /’ SOdalite

language support that are tailored to deployment model refactoring (See Policy-based Deployment
Adaptation).

A configurable system provides a number of options that enable users to generate many variants of
the system where each variant is tailored to support a given set of functional and quality
requirements®’. In the context of the SODALITE, we consider the systems whose components can
be deployed in various ways (many deployment options), which is a type of a configurable system.
The configurable system engineering is a common approach to building self-adaptive systems,
where the adaptation is modeled as switching between system variants [De Lemos 2013]. Along
the same lines, we model the safe adaptation of a deployment model of an application as
switching between allowed deployment model variants, where each deployment model is a subset
of deployment options. To enable deployment model switching, an efficient approach to
estimating the performance metrics for many deployment model variants is needed (see
Alternative Deployment Configuration Selection).

In software development, the code refactoring is commonly performed to remove the “code bugs
and smells™’ . The deployment models can also have “bugs and smells”. Thus, the deployment
refactoring also aims to detect and remove the bugs and smells in the deployment model/topology
of a system. In particular, within the context of the SODALITE, we focus on detecting and removing
performance bugs/anomalies (see Data-driven Performance Anomaly Detection) and deployment
policy violations (See Policy-based Deployment Adaptation)

4.8.1 Innovation
Policy-based Deployment Adaptation

The rule-based (reactive) systems are one of the common approaches used by self-adaptive system
research literature to enable capturing and enacting adaptation decisions®. While there exist
rule-based systems for common software applications, there is a lack of such systems tailored to
runtime management of heterogeneous application deployments. The management system needs
to support different classes of runtime changes that can potentially occur to a deployment model
of a heterogeneous application. The changes need to be realized and managed at runtime without
disturbing the operations of those users unaffected by the change. A software engineer should be
able to declaratively specify changes and enact the change specification at runtime to modify the
application. SODALITE aims to provide a policy-based deployment adaptation support that meets
these requirements.

Alternative Deployment Configuration Selection

The increasing heterogeneity of computing resources gives rise to a very large number of
deployment options for constructing distributed multi-component applications. In principle,
application providers can leverage this heterogeneity to optimize the application performance and
cost. However, in practice, selecting the most appropriate combination of deployment options is
hard because of the large deployment space® ™. One way to address this problem is to build a
comprehensive performance model for the application by measuring the performance of the
different deployment variants, i.e., valid combinations of deployment options, upfront. However,
such an exercise can be extremely costly and time-consuming. Therefore, we propose a novel
approach for modeling and predicting the performance of valid deployment variants of a
distributed application - based on the observed performance of a small subset of the variants. We
first model the valid and practical set of deployment variants for a given application by leveraging
domain knowledge about the commonalities and variations in the deployment options. We then
measure the performance of a selected subset of these deployment variants to create a suitable
performance model that we use to predict the performance of the remaining deployment variants.

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 36
© Copyright Beneficiaries of the SODALITE Project

9% .
{ } Project No 825480. ’SOdallte

The performance models are built by applying machine learning and deep learning by using the
deployment options as features (independent variables) of the models.

Data-driven Performance Anomaly Detection

An anomaly can be defined as a rare event where the system behavior deviates from what is
standard, normal, or expected’. For example, a service could use an anomalous amount of
resources, or the service network exhibits traffic anomalies. The ability to detect anomalies and
trigger corrective actions is critical to maintain the quality of service, and to prevent runtime
service failures and undue usage of resources. While anomaly detection has been a popular topicin
the research literature, there are only few recent studies on microservice performance anomalies”.
The microservice based applications are complex, interconnected web of services. There are a lack
of labeled datasets reporting different types of anomalies occur in microservice-based
applications, in particular, service network anomalies. Consequently, there is also a lack of a
machine learning based framework for detecting such anomalies.

We aim to provide a dataset of service network anomalies for the microservice-based applications.
A machine learning based framework is also developed to support continuous performance
anomaly detection in microservices. By utilizing various capabilities of SODALITE (e.g., monitoring
and alerting, platform and resource discovery, policy based adaptation, and redeployment), the
runtime detection and correction of anomaly behaviors are supported.

4.8.2 Architecture
Deployment Refactorer
Predictive Model
Feature Store :
Repository
|
Performance /" Deployment Deployment Performance Workload
Predictor | |\ Variability Model ; Configuration Selector Anomaly Detector Predictor
A Y i
| Adaptation | pgjicy Engine
! Policy j
I
Query Deployment
Model Fragments g X
TOiCA AADM to TOSCA Events/Alerts Auto Scaling Policy
Deployment Option Orchestrator Deployment L
P V P P V. Monitoring System Node Manager
Discoverer (Xopera) Preparation API

Figure 17 - Overall Architecture of Deployment Refactorer

Eigure 17 shows the overview of the detailed architecture of Deployment Refactorer. The overall
deployment adaptation logic can be codified as an ECA (Event-Condition-Action) policy. Policy
Engine can enact and manage such policies. In order to build complex policies, Deployment
Refactorer provides a set of utilities: Workload Predictor, Performance Predictor, Deployment
Configuration Selector, and Performance Anomaly Detector. Workload Predictor uses linear and

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 37
© Copyright Beneficiaries of the SODALITE Project

94 .
{ } Project No 825480. ’SOdallte

polynomial regression models to forecast the workload (the number of requests for the next
period). Given the predicted workload and the deployment options used, Performance Predictor
can predict the performance metrics. If the current deployment model variant cannot meet the
performance goals, Deployment Configuration Selector can be used to find an alternative
deployment model from the allowed set of deployment model varnats (expressed in the
deployment variability model). Performance Anomaly Detector can be used to continuously
monitor the current deployment for anomaly behaviours, and generate alerts. The predictive ML
models used by each of these components are stored in the Predictive Model Repository. The
features used by such models are stored in the Feature Store. In the rest of this section, the support
for the key capabilities of Deployment Refactorer are presented.

Policy based Deployment Adaptation

In response to the events generated by the components such as Monitoring System, Node
Manager, Performance Predictor, and Performance Anomaly Detector, the Deployment Refactorer
carries out the desired changes to the current deployment of a given application. To allow a
software engineer to define the deployment adaptation decisions, we provide an ECA
(event-condition-action) based policy language. Figure 18 presents the key concepts of the
policy language. A policy consists of a set of ECA rules.

Added Removed \ Updated ConstraintViolated NodePaolicyViolated
| I {; | I
i~ ModeStateChange
:L> Event Condition
Metric

3 . 1

| | Adaptation Rule

Measured ConstraintViolated
Action
P e e e e S e e e e Operator Applies
L [}
has i Node has has Relation

T
o | | I

e Add ‘ Remove Update

NodePolicy Capability Requirement Property ——has

Figure 18 - Meta-model of Deployment Adaptation Policy Language

Events and Conditions. A condition of a rule is a logical expression of events. We consider two
common types of events pertaining to the deployment model instance of an application:
deployment state changes and application and resource metrics. The deployment state change
event captures the state of a node or relation in a deployment model instance. The application and
resource metric events include (raw or aggregated) primitive metrics collected from the running
deployment, for example, average CPU load, as well as alerts or complex events that represent
predicates over primitive metrics.

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 38
© Copyright Beneficiaries of the SODALITE Project

9% .
{ } Project No 825480. ’SOdallte

Actions. The actions primarily include the common change operations (Add, Remove, and
Update) and the common search operations (Find and EvalPredicate) on nodes and relations in a
deployment model. Additionally, the custom actions can be implemented and then used in the
deployment adaptation rules, for example, actions for predicting performance of a particular
deployment model instance or predicting workload. To ensure the safe and consistent changes to
the deployment model instance, Deployment Refactorer makes the change operations to a local
representation (a Java Object model) of the deployment model (represented using the
concept of models@runtime®). Once the adaptation rules in a rule session are executed,
Deployment Refactorer translates the current local object model to the TOSCA file, and calls the
relevant APl operation of the Orchestrator with the generated file to enact the updated
deployment model.

Execution. The correct ordering of the rules as well as that of the actions within each rule are
required to achieve a desired outcome. The rules are independent and are activated based on their
conditions. When multiple rules are activated at the same time, the priorities of the rules can be
used to resolve any conflicts. Within a rule, if-then-else conditional constructs can be used to order
the actions.

Figure 19 show an example of a deployment adaptation rule that reacts to the event
LocationChangedEvent by undeploying a data processing service deployed in a VM located in a data
center at the previous location (de-Germany), and deploying the same service in a VM from a data
center at the new location (it-Italy). A predicate over the TOSCA node properties location service
name is used to find the correct TOSCA node template.

import eu.sodalite.TOSCARepositoryAPI repoAPI;

rule "location_change_ from de_to_it"

when
$fl : LocationChangedEvent (preLoc == "de", currentlLoc == "it") and
$dm : DeploymentModel ()

then

$dm.removeNode (" (?location = \"" + $fl.getPreloc() + "\")
&& (?service-name = \"" + $fl.getServiceName() + "\")");
$dm.addNode (repoAPI.find (" (?location = \"" + $fl.getCurrentLoc() + "\")
&& (?service-name = \"" + S$fl.getServiceName () + "\")"));
emit NodeReplaced ($fl.getServiceName ()) ;
end

Figure 19 - A snippet of a Deployment Adaptation Rule

Alternative deployment configuration selection

Figure 20 depicts the workflow of our approach for building a performance model that can predict

the performance of each of the alertiave deployment model variants by using the performance

measurements from only a subset of variants. The initial performance models are built offline, and

at runtime, based on the monitored data, the models are retrained as necessary, for example, if
Variability "1 Deployment Variants Deployment Variants Performance of the and Validating ML

the model accuracy drops below a predefined threshold.
Model Acceptable
T G] i Sample Model Accm’acs_.‘”’
| 1 g3 = I |
- 1 Lok
Iy 1

Model Deployment | Initial Sample of A Subset of Valid Measuring Training, Tuning, Model

—Yesh

r

Additional Sample of | |
Deployment Variants

Deployment Variability Model

Figure 20 - An Overview of Our Approach to Building A Performance Model for a set of Alternative
Deployment Model Variants

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 39
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. /’ SOdalite

In the model building workflow, first, we model the allowed set of deployment variants for a
given application based on the deployment decisions, their instantiations, and their
inter-dependencies. Based on this deployment variability model, we select an initial valid sample
of deployment variants, and measure the performance of each variant in the sample. We use the
measured application performance dataset to train a predictive model and then evaluate its
performance. If the model prediction accuracy is unacceptable, the performance of an
additional sample of deployment variants is measured and used to retrain the model.

To model the allowed variations in the deployment topology of an application, we use
feature modeling technique, which is a widely-used variability modeling technique™ [Berger
2013], and is also supported by open source and commercial tools. We used FeaturelDE™, which is
an Eclipse plugin that can be installed into the SODALITE IDE. A feature model can represent the
commonalities and variations in a family of artifact variants as configuration options and
their inter-dependencies and other constraints. An artifact can be a software system,
application, design model, and more. By respecting all the constraints defined by the feature
model, we can select asubset of configuration options (called a feature configuration), which
represents a valid artifact variant or a family member. Eigure 21 shows a feature model for a
benchmark web application (used in the evaluation of our approach). The feature leaf nodes
represent the component deployment options, which are the unique assignments of
application components to VMs. Similarly, the feature group nodes (non-leaf nodes) and their
hierarchical organization captures the logical decomposition of the deployment decisions. For
example, the web server and the database cache can be deployed together (co-deployment) or
separately (separate-deployment), which can be modelled using a XOR feature group.

\ Web Application Deployment Model l
[

Web-DBCache

] ‘ Sc])alch—])\:p]n)'ltrl\.‘l]i | | (‘n—l)éploymem [
WebCache Py Database
= =) XLarge -
WebServer DBCache VM ” E

-

= D1l Cluster [Single |
- N 1§ Py
i e p N\ e I Y / et s P - | S
3Small 3Medium Large XlLarge 4Small 3Large Medium Large Medium Large 3Small AMedium Large Medium XLarge
VMs VMs VM VM VMs VMs VM VM VM VM VMs VMs VM VM VM
D1 D2 D3 D4 D5 D6 D7 D8 DO DIO D12 DI3 D14 DIs D16
Cross Tree Constraints: \VebCache Excindes DBCache and Co-Deployment I | -
ross Lree COonsrants: . hase Single Medium VM Tncludes DBCache Single Medium VM Mandatory 5 Optional ¥ XOR Group

Figure 21 - A Feature Model, Capturing Deployment Variability in the RuBiS Web Application

To sample a variability model (i.e., to select a subset of deployment model variants), there exist
many sampling strategies proposed by the research literature in the performance modeling of
configurable systems™. In our current implementation, we experimented with three sampling
techniques: random sampling, T-wise sampling, and dissimilarity sampling.

To collect data for offline training of models, we used the benchmarking approach due to our
preference for the accuracy of the performance data. For each deployment variant in the
sample, we select the component deployment options, create them in the target environment,
subject the application to a range of workloads using a load testing tool, and collect the
performance metrics (response time) per workload.

To build the predictive models, the current literature in configurable systems has used many
different learning algorithms, including traditional machine learning algorithms as well as deep
learning models. In our current implementation, we used the following three models: Decision Tree
Regression (DTR), Random Forest Regression (RFR), Multilayer Perceptron Neural Network (MLP).

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 40
© Copyright Beneficiaries of the SODALITE Project

¢ .
{ } Project No 825480. ’SOdallte

The prediction of the performance (a continuous value) of individual deployment variants is a
regression problem. It essentially learns a mapping function (f) from input variables (X) to a
continuous output variable (y). The input variables are the leaf nodes in the feature model,
i.e., the component deployment options, and the workload levels, and the output variable is
response time.

The performance prediction model is used at runtime to predict the performance of a given
deployment variant for a given workload. If the current deployment model cannot satisfy the
performance goals, then, a deployment model variant that can meet the performance goals is
selected.

Data-Driven Performance Anomaly Detection

rdl
Collect Resource Usage and
Performance Data for Known
Design time . Healthy and Anomalous Runs)
N

g " , 9
7N Feature Extraction Train Predictive
(J and Selection Models
N \

N B

N

Runtime

N\

S —
Predictive Model
Feature Store 5
Repository
False Positive?

Monitoring of Deployments
J

(a)

: e - | ; T
i _— (. .) Raise an Anomaly
\ Monitoring of Deployment Feature Selection Predict Anomalies No—p Alarm/Event
S (.) \ 4

A\ A o

h 4
e e ———

_ _
DR T Precﬁctlv? Model
(b) Repository

Y

Figure 22 - An Overview of our Anomaly Detection Approach : (a) Training Workflow (Offline and
Runtime), (b) Prediction Workflow (Runtime)

We aim to detect whether a compute node or a cluster is anomalous and classify the type of the
anomaly at runtime, independent of the microservice application that is running on the compute
node or the cluster. To detect and classify anomalies, we propose a machine learning based
approach (see Figure 22). We first build the machine learning models at the design time by utilizing
historical resource usage and performance data that are collected from healthy and anomalous
situations. Then, at runtime, we apply these models to the monitoring data from the application
deployment to detect anomalies. The monitoring data is also used to update and adapt the
models.

4.8.3 Features

e Alternative deployment configuration selection
o A machine learning based framework to build the predictive models for predicting
the performance of a set of alternative deployment models
o Select and switch between alternative deployment models at runtime
e Policy based Deployment Adaptation
o Ahigh-level support for expressing arbitrary deployment adaptation policies
e Data-Driven Performance Anomaly Detection

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 41
© Copyright Beneficiaries of the SODALITE Project

94 .
{ } Project No 825480. ’SOdallte

o Adataset of microservice network anomalies

o A machine learning based framework for detecting performance anomalies in
microservice deployments.
4.8.4 Status
Overall Architecture of Deployment Refactorer

The overall architecture of the deployment refactoring was published in our ESOCC 2020 paper”. A
detailed discussion of the architecture was included in a journal paper submitted to Journal of Grid
Computing. A literature review on policy-aware deployment and management of cloud
applications was published as a contribution to a journal publication in the Sensors journal™.

Policy based Deployment Adaptation

We submitted a journal paper on our approach and the initial implementation of the policy-based
deployment adaptation support to Journal of Grid Computing.

We validated our approach with three key scenarios from the Vehicle IoT use case: location-aware
redeployment, alert-driven redeployment: Cloud alerts, alert-driven redeployment: Edge alerts.
The selected scenarios demonstrated deployment, monitoring, location-aware redeployment, and
alert-driven redeployment. Each scenario covers deployment modeling, actual deployment,
monitoring, and deployment adaptation. The recorded demonstration videos of the three
scenarios are also available in the GitHub™.

Alternative deployment configuration selection

We submitted a journal paper on our approach to building performance models for enabling
deployment configuration section to IEEE Transactions on Services Computing.

We demonstrated the practicality and feasibility of our proposed approach by applying it to a) an
extension of the RuBiS benchmark® application deployed on Google’s Compute Engine (92
deployment alternatives, shown in Figure 23), b) Teastore® microservice benchmark application on
Google Kubernetes Engine (78 deployment alternatives). The experimental results using the
predictive algorithms demonstrated the effectiveness of our proposed approach, i.e., the ability to
accurately predict the performance of deployment configurable cloud applications.

R-Squared

Sample Size

0 5 10 15 20 25 30 35 40 45

—@— Decision Tree Regression —@&— Random Forest Multilayer Perceptron Neural Network

Figure 23 - performance of the models with respect to the sample size used for training

Figure 23 - shows the performance of the models with respect to the sample size used for training
the models (for the RuBiS benchmark application). From the experimental results, the first

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 42
© Copyright Beneficiaries of the SODALITE Project

94 .
{ } Project No 825480. ’SOdallte

observation is that all three models perform better with model tuning. The second observation is
that all three models show improvement in their performance with iterative model training using
sampling. DTR, RFR and MLP-NN return a R2 score of 98%, 96% and 99% respectively. Most
importantly, the results confirm that our approach is feasible by demonstrating that it is possible
to learn a good function that can predict the performance of unseen deployment variants based on
training using the performance data of a subset of the valid deployment variants (14-28 of the 93
valid variants).

Data-Driven Performance Anomaly Detection

e We have started to experiment with a recent microservice memory anomaly dataset® using
three predictive algorithms Random Forest, Decision Tree and Deep Learning with AdaBoost.

e We have started to collect a service network anomaly dataset with TeaStore microservice
benchmark®, Google Kubernetes Engine, and SODALITE SkyDive monitoring support.

4.8.5 Code quality

This component is written in Java and Python, and it is integrated into SonarCloud for quality
assessment and obtained the following quality score for each sub project in the Github repository.
Note that the extended RUBIS benchmark application is implemented in PHP, which is not
included in the SonarCloud reports.

e Policy-based Deployment Adaptation (Java): The Java-based sub-component has 96.2%
code coverage, 75 code smells and 9.0% code duplications. In the next releases we will
focus on reducing the code smells, removing duplicate code by refactoring the code base,
and improving code coverage by adding more unit tests.

Last analysis: January 28, 2021, 12:24 Pl

00 00 100% @ 750 O 9%6.2% 9.0% 1.7« @
f[Bugs

E Vulnerabilities e Hotspots Reviewed & Code Smells Coverage Duplications Java

Figure 24 - Code quality report for Policy-based Deployment Adaptation

e Machine Learning Pipelines (Python): The Python-based sub-component has 34.2% code
coverage, 59 code smells and 6.1% code duplications. In the next releases we will focus on
reducing the code smells, removing duplicate code, and improving code coverage.

Last analysis: January 28 2021, 12:24 PM

0Q A) 100% @ 59 Q Q 34.2% 6.1% 809 @

f[Bugs E Vulnerabilities e Hotspots Reviewed @ Code Smells Coverage Duplications Python, XML

Figure 25 - Code quality report for Machine Learning Pipelines

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 43
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ’ SOdalite

4.8.5 Next steps
e Policy based Deployment Adaptation
o Improve the policy language to support all deployment adaptation scenarios of
SODALITE use cases
o Improve the integration between the policy engine and other components (e.g,
Deployment Preparation APl and Node Manager).
e Alternative Deployment Configuration Selection
o Model the deployment configuration selection as an optimization problem that
maximizes the overall utility of the system while considering cost/performance
tradeoffs.
Support support all deployment model switching scenarios of SODALITE use cases.
o Changes in the infrastructure (e.g., adding new resources or retirement of existing
resources) change the deployment options, which in turn alters the number and
importance of the features used by the machine learning (ML) models. Hence, the
different versions for the ML models should be maintained. Also, the accuracy and
performance of the machine learning models can decrease overtime. Thus, the
models need to be monitored for their performance and restrained as appropriate.
The machine pipeline for building performance prediction models needs to be
improved by applying MLOps (Machine Learning Operations) principles and
techniques.
e Data-Driven Performance Anomaly Detection
o Complete the collection of service network anomaly dataset and the
implementation of the ML models for anomaly detection
o Complete the integration with the policy based adaptation support

4.9 Node Manager Refactoring

Component Node Manager is in charge of managing and optimizing the usage of existing resources
allocated by the SODALITE users or by other SODALITE components (e.g., Deployment Refactorer).
The Node Manager oversees the execution of multiple concurrent applications deployed on a shared
cluster of virtual or physical machines using containers. The cluster is assumed to be
heterogeneous meaning that nodes can be equipped with both CPUs and GPUs. The goal of the
Node Manager is to fulfil given application requirements on the response time while minimizing
resource usage.

4.9.1 Innovation

The main innovation of Node Manager lies in its ability to provide a coordinated management of
heterogeneous resources through both smart load balancing and fine-grained resource
management. In heterogeneous clusters traditional cloud-based solutions® ®, cannot be reused
because they do not consider the heterogeneity introduced by GPUs but, usually, only different VM
configurations. CPUs and GPUs are interdependent resources while different virtual machines are
not. GPUs are more computationally powerful than CPUs but they also use CPUs to load and write
data, and to be activated. Moreover, they also have different scaling capabilities: CPUs can be
scaled by allocating with high precision quotas of cores; GPUs can only be time-shared among
different applications. Solutions that combine the management of CPUs and GPUs® ® 8" mostly
focus only on Machine Learning training, and only exploit scheduling and load balancing
algorithms and not dynamic resource provisioning®.

An architecture for the deployment and management of applications that can be run on a
heterogeneous infrastructure

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 44
© Copyright Beneficiaries of the SODALITE Project

{'**} Project No 825480. /’ SOdalite

Node Manager facilitates the initial deployment and runtime management of applications with the
capabilities of running on a heterogeneous infrastructure (e.g., Machine Learning applications).
Users just have to provide a TOSCA blueprint with metadata regarding container information (e.g.,
container image) and the initial amount of resources to allocate for each application. Node
Manager automatically deploys the application in a set of containers that are optimized for the
runtime control.

Node Manager exploits three level of controls: a centralized load balancing algorithm that
efficiently schedules requests to CPUs or GPUs according to applications’ needs, a Supervisor on
each cluster node to solve local resource contention scenarios, and one CTController (based on
control theory) for each instance of application deployed on each node to continuously optimize
CPU allocation (vertical scalability).

A smart load-balancing algorithm for heterogeneous resources

Node Manager provides a centralized load balancer that exposes APIs that can be exploited by
users to utilize their applications. Users’ requests are temporarily stored in dedicated queues (one
for each application). Node Manager uses two schedulers to extract requests from queues and
execute them on fast GPUs or CPUs.

GPUScheduler extracts requests from the queue of the application with the greatest difference
between expected and measured performance to boost executions. CPUScheduler works together
with CTControllers. It uses a fair round-robin policy and forward requests to available CPU devices.
Locally at the node level, CTControllers accelerate or decelerate the executions by continuously
modifying the CPU cores allocated to containers. When GPUScheduler schedules a request for GPU
execution, the average response time of the application significantly decreases. In this case,
CTControllers react quickly to this sudden change by decreasing the number of allocated CPU
cores. Note that allocated cores could not be lowered even when GPUs are used because of other
exogenous factors (e.g., workload fluctuations).

Control-theoretical planners and Supervisor for the coordinated management of CPU
resources considering GPU utilization

Node Manager optimizes the scheduling of the centralized load balancer by dynamically
reconfiguring running containers (vertical scalability). Given N application to deploy on a node with
G GPUs, Node Manager deploys, N containers for CPU executions, G containers containing all the
application for GPU executions, and one container running all the CTControllers (one per
application) and the Supervisor. This deployment allows the independent management of CPU
cores and memory for each application since they run segregated. Moreover, it allows to separate
CPU executions from GPU ones and to share a single GPU among different applications (at the time
of writing it is technically not possible to mount the same GPU onto two containers).

CTControllers are implemented as PI controllers and they are set to have a control period of 1
second. Each CTController oversees the execution of a single container (among the ones dedicated
to CPU executions), it computes the optimal resource allocation to reach a given set-point,
considering the workload and the utilization of the GPU. Before enacting the resource allocation,
the computed value is passed to the Supervisor that gathers all the computations of CTControllers
at each control period. If the sum of the allocations is greater than the available cores Supervisor
downscales the allocations using a configurable heuristic (the default strategy is proportional).
After the Supervisor computes the allocations, the state of CTControllers is updated and the
allocation quickly enacted using cpu-quotas (vertical scalability).

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 45
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. /’ SOdalite

NODE MANAGER
COMPONENT - DEVICE
NODE MANAGER
CONTROL |:| THIRD PARTY
USER APPLICATION ! | CONTAINER
........... NODE MANAGER LAUNCHER | I:l -

KUBERNETES KUBERNETES -
DEPLOYMENTS SERVICES
SUPERVISOR

WORKLOAD cT
APP 1
/exec/appl /exec/app2 /exec/app3 -+ oT
| GATEWAY | =
v APP 3
|
QUEUES

APP 1 APP 2 APP 3 LIBS |
QUEUE QUEUE QUEUE | APP i ” APP2 ” APP 3 I

GPU SCHEDULER @ CPU SCHEDULER

| LIBS |
| app1 |[ApP2 || APP3 |
DISPATCHER WORKERS
T T T KUBERNETES CLUSTER T

Figure 26 - Node Manager Architecture

Node Manager exploits a distributed architecture and a hierarchical control-strategy as shown in
Figure 26 where three applications are in execution. Node Manager exploits Kubernetes to ease
application deployment. Users can submit applications descriptions using TOSCA blueprints to
component Node Manager Launcher. This component automatically generates Kubernetes
Deployment and Service files and deploys the applications as described in the previous section.
The deployment step returns a set of endpoints that are exposed by component Gateway and that
can be used by the user to submit requests to each application. Requests are stored in queues so
that the GPU and CPU Schedulers prioritize the executions according to application needs. In the
distributed nodes (i.e., workers) applications along with dependency libraries are deployed onto
containers. Moreover a special container called Actuator wraps all the CTControllers (CT in the
figure) and the Supervisor. Actuator exploits Docker-out-of-Docker to reconfigure containers at
runtime without the need of centralized updates. This enables short control periods (e.g., 1
second).

4.9.3 Features

The main feature of Node Manager is the automated resource management for heterogeneous
infrastructures. Node Manager is able to keep the response time of multiple concurrent
applications under control (i.e., below the SLA). It coordinates smart load balancing and resource
allocation in order to optimize the usage of GPUs and CPUs. Moreover, Node Manager automates
the deployment of the applications using standard TOSCA inputs.

4.9.4 Status

A prototype of Node Manager was implemented and evaluated on the Azure public cloud using four
benchmark applications: Skyline Extraction from Snow UC, ResNet, GoogLeNet, and VGG16. Node
Manager was compared with a rule-based system obtaining overall 96% fewer SLA violations while

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 46
© Copyright Beneficiaries of the SODALITE Project

¢ .
{ } Project No 825480. ’SOdallte

using 15% fewer resources. A detailed description of the results can be found in deliverable D6.3 at
Section 5.2.

4.9.5 Code quality

The component is written in Python and it is integrated in SonarCloud for quality assessment and
obtained the following quality scores as depicted in Figure 27.

refactoring-ct PUBLIC
Last analysis: January 15, 2021, 12:35 PM

00 0Q 100% @) 93 Q Qos8% @ 41.5% 5.4k ©

¥ Bugs B Vulnerabilities @ Hotspots Reviewed & Code Smalls Coverage Duplications Python, HTML, ...

Figure 27 - Code quality report for Node Manager

4.9.5 Next steps

e Betterintegration with the SODALITE infrastructure (monitoring)
e Integration with Deployment Refactorer

4.10 Refactoring Option Discoverer

A refactoring option represents one or more nodes in a deployment model/topology. The objective
of Refactoring Option Discoverer is to discover new refactoring options as well as the changes to
existing refactoring options. Deployment Refactorer uses Refactoring Option Discoverer to find the
alternative nodes to be used for adapting the current deployment model.

4.10.1 Innovation
TOSCA Compliant Resource Discovery using Semantic Matchmaking.

While there exist many studies on the discovery and composition of services and resources, only a
few recent studies have considered discovery and composition of standardized resources, for
example, TOSCA based compute nodes®. These approaches are also limited to matching between
the requirements and capabilities of nodes. In particular, the matching is mainly based on
syntactic properties, and there is also a lack of consideration for policies attached to resources
(e.g., TOSCA policies, which govern use or access to the resources). We use semantic web
technologies for discovering TOSCA-compliant resources and deployment model fragments. Our
semantic matchmaker considers constraints on node attributes, node requirements, node
capabilities, and node policies. The semantic annotation of resource models including the
attached policies enables machine reasoning which is then used for both the discovery and the
composition of resources.

4.10.2 Architecture

Figure 28 shows the design of our support for discovering TOSCA compliant nodes (resources)
using semantic matchmaking. SODALITE KnowledgeBase (WP3) includes the semantic descriptions
(ontological representations) of all the resources in the infrastructure. The knowledgebase can be
populated by the resource experts manually. If there exists TOSCA-based descriptions of the
resources, then, such descriptions can be automatically translated to the corresponding
ontological representations using the APIs provided by the knowledgebase. At runtime, Platform
Discovery Service (WP4) can automatically discover dynamically added resources to the
infrastructure, create their ontological representations, and update the knowledgebase.
Deployment Option Discoverer performs matchmaking by executing the SPARQL queries over the

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 47
© Copyright Beneficiaries of the SODALITE Project

SN Project No 825480.

ontologies in the knowledgebase. It provides a high-level system support to the Deployment
Refactorer to allow searching for resources, for example, find (a logical expression over node
properties). Deployment Option Discoverer has the SPARQL query templates for different types of
resource matchmakings. The query templates are instantiated with the input data received
through the high-level API operations. Figure 29 shows a snippet of the SPARQL Query generated

‘¥ Sodalite

for retrieving nodes matching the constrinant flavor = "m1.small" && image = "centos7".

Deployment Refactorer

Platform Discovery
Service (WP4)

| Populate
{Automated)

Discover

Infrastructure
(Resources)

Resources -

Find

Deployment Option
Discoverer

Execute Matchmaking Queries

Knowledgebase (WP3)

Ex
e cu-te
Queries

Semantic Reasoner
(WP3)

Populate Via SODALITE IDE

Resource Experts

Figure 28 - High-level Architecture of Dynamic Discovery and Use of Resources

where {

b

?nodetype rdfs:subClassOf tosca:tosca.nodes.Compute .

?node rdf:type Ynodetype .

OPTIONAL {?node dcterms:description ?description .}
FILTER (?nodetype != toscatosca.nodes.Compute) .

FILTER (?node = owl:Nothing) .
?node soda:hasContext Pcontext .

?context tosca:properties ?conceptD .
OPTIONAL {?conceptd DUL:classifies snow flavor .}
OPTIONAL {?concept0 tosca:hasDataValue ?flavor .}

?context tosca:properties ?conceptl .
OPTIONAL {?conceptl DUL:classifies snow:image .}

OPTIONAL {?conceptl tosca:hasDataValue ?image .}
} Filter {{ *flavor = "ml.small") && (?image = "centos7"))}

select DISTINCT ?node ?description ?nodetype

Figure 29 - A Snippet of the SPARQL Query Generated for Retrieving Nodes Matching the
Constrinant flavor = "m1l.small" && image = "centos7"

4.10.3 Features

The semantic matching capabilities provided by this component include:

e Matchmaking based on TOSCA node properties

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version

© Copyright Beneficiaries of the SODALITE Project

Page 48

9% .
{ } Project No 825480. ’SOdallte

The resources (nodes) have various properties, e.g., flavor and image of a VM node. Such
properties can be used to select the desired resources.

e Matchmaking based on TOSCA node capabilities and requirements
The resources (nodes) can also specify their capabilities and their requirements, e.g., the
capability to host a database engine. Such capabilities/requirements can be used to select
the desired resources.

e Matchmaking based on TOSCA policies
The resources (nodes) can also specify the policies that determine deployment, access, and
management of the resources, for example, auto scaling policy or placement policy. The
resource policies can be used to select the desired resources.

4.10.4 Status
e Resource matchmaking based on TOSCA node properties
The logical expressions on the constraints on node properties can be used to select the
nodes. For example, a VM with ‘CentOs’ image and ‘small’ flavor can be discovered.
e Resource matchmaking based on TOSCA node capabilities and requirements

The nodes are discovered by matching the requirements of the source node with the
capabilities provided by the candidate target nodes. For example, a database node thatis
capable of hosting a MySQL database can be discovered.

e Resource matchmaking based on TOSCA policies

We support the policies that are either evaluated to true or false based on the values
provided by one or more properties of the policy. For example, a node that will be only
deployed on the data centers in Germany or Italy can be discovered by checking if the node
has a placement policy that enforces the desired deployment constraint.

4.10.5 Code quality

This module is written in Java, and it is integrated in SonarCloud for quality assessment and
obtained the following quality score : 90.2% code coverage, 20 code smells and 0.0% code
duplications. In the next releases we will focus on reducing the code smells, removing duplicate
code by refactoring the code base, and improving code coverage by adding more unit tests.

Last analysis: January 27, 2021, 5:39 PM

0Q 00 100% @) 200 O 90.2% O 0.0% 306 @

ﬁ Bugs E Vulnerabilities e Hotspots Reviewed & Code Smells Coverage Duplications Java

Figure 30 - Code quality report for Refactoring Option Discoverer

4.10.5 Next steps
e Improved matchmaking capabilities

The current matchmaking capabilities support some dynamic resource discovery
requirements of SODALITE case studies. Those capabilities need to be extended to
support all the resource discovery requirements.

e Improved the Integration with the Deployment Refactorer

All matchmaking capabilities need to be exposed as REST API operations and Deployment
Refactorer needs to be able use each matchmaking capability.

5 Extension of the existing components (Atos, All)

This section presents the current status of the components already included within the M12 release
of the Runtime Layer [D5.1]. For each component, it is described the improvements incorporated

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 49
© Copyright Beneficiaries of the SODALITE Project

{'**} Project No 825480. ’ SOdalite

since the last release, the analysis of the code quality and its planned development steps for next
releases (M30 and M36).

5.1 Orchestrator

SODALITE uses xOpera, the lightweight TOSCA orchestrator compliant with TOSCA Simple Profile in
YAML Version 1.3%, to provide provisioning, configuration and application deployment through
TOSCA/Ansible blueprints. SODALITE further improved the usability of xOpera orchestrator
providing a REST APl wrapper, described in the subsection 5.1.2. In this section the most important
improvements on both the xOpera orchestrator and the REST API are described in more detail.

5.1.1 xOpera

5.1.1.1 Improvements

During the second year of the project many changes and improvements were introduced in the
xOpera orchestrator. The xOpera orchestrator continued on its path to support the latest TOSCA
standard developments and implementations. Many of the added features present a novelty and
improve the projects where xOpera is used for orchestration over different and heterogeneous
environments. Many of the new features represent architectural improvements like enabling
xOpera to be used as a Python API library while some of the added features represent a novel
approach to TOSCA deployments. In the next sections we will only focus on the most prominent
and innovative features implemented based on SODALITE requirements to support the execution
of SODALITE proofs of concepts (PoC) and real world application deployment scenarios
introduced by SODALITE use case demonstrators.

Resume Command: The xOpera resume command was introduced to support a broken execution
topology deployment workflow. In real world scenarios the execution of complex application
deployments over different heterogeneous platforms can often break for many different reasons -
such as resource unresponsiveness, faulty configuration introduced based on human errors or
configuration drift, etc. In many cases resuming the deployment from a faulted node in a provided
blueprint helps to successfully deploy the entire blueprint, especially in a large topology when the
execution of the previous successfully executed nodes could be lengthy and costly.

During the deployment of application components, failures might occur, interrupting the
deployment progress. For example, an installation of a software package has failed after the
provisioning of a virtual machine or an element of a workflow execution has failed after successful
execution of previous elements. In this case, the Orchestrator should provide functionality to
resume the deployment progress from the failed component, as it becomes costly and error-prone
to recover the deployment from the beginning.

A resume option for xOpera was implemented allowing to restart the deployment from the point of
failure. Additionally, if resume behavior is not preferred, a clean state option can be selected that
will clear the deployment progress and start over. The following presents an example.

Consider this topology template. The property "success" of TOSCA node type "SuccessOrFailure"
defines whether the component deployment will be failed. In this case, the failure will be triggered
for component_2, as shown in Eigure 31:

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 50
© Copyright Beneficiaries of the SODALITE Project

94 .
{ } Project No 825480. ’SOdallte

topology template:
node templates:

component 1:
type: SuccessOrFailure
properties:
success: true

component 2:
type: SuccessOrFailure
properties:
success: false

component 3:
type: SuccessOrFailure
properties:
success: true

Figure 31 - Sample deployment TOSCA blueprint showing failure

If we try to deploy this template, an error will occur as shown in Eigure 32:

$ opera deploy fail.yaml
[Worker 0] Deploying component 1 0
[Worker O] Executing create on component 1 0
[Worker 0] Deployment of component 1 0 complete
[Worker 0] Deploying component 2 0
[Worker 0] Executing create on component 2 0
[Worker 0] --------——--

Failure output
[Worker 0] -----=---——--
[Worker 0] ============

Figure 32 - xOpera output showing the run of the failed execution of the TOSCA blueprint

In order to resume the deployment, the "success" property is set to "true" boolean value. As it can
be seen in Eigure 33, the deployment started from the previously failed component.

$ opera deploy —--resume fail.yaml

The resume deploy option might have unexpected consequences on the already
deployed blueprint.

Do you want to continue? (Y/n): Y

[Worker 0] Deploying component 2 0

[Worker 0] Executing create on component 2 0

[Worker O] Deployment of component 2 0 complete

[Worker 0] Deploying component 3 0

[Worker 0] Executing create on component 3 0

[Worker 0] Deployment of component 3 0 complete

Figure 33 - xOpera output showing the run of the failed execution of the TOSCA blueprint

Parallel execution of deployment: SODALITE is a framework that enables the user to easily define
and use heterogeneous resources and deploy complex applications on those resources with a
special focus on performance optimization. SODALITE supports two different ways of application
deployment optimizations. The first is static, initiated at deployment time based on selected target
resources and application optimization parameters. The second one is a dynamic - runtime
optimization, based on the possible redeployment choices the platforms offer to the user. In both
cases the orchestrator deploys and executes a possibly complex application deployment blueprint

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 51
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

over several infrastructures managing many different infrastructure configurations and application
artifacts. Ansible as probably the first choice over the configuration tools used by DevOps teams,
unfortunately, poorly supports parallelization of execution workflows which is used as the main
executor in xOpera. SODALITE has upgraded xOpera to execute the deployment in a parallelized
way resulting in substantial decrease of the time needed to deploy a complete complex
application.

The xOpera orchestrator is able to execute a TOSCA/ansible blueprintin a parallelized way through
the -w switch in the execution of the deploy and undeploy command. The implementation uses a
pool of w threads that are assigned on a per need basis regarding the node dependencies.

Consider an application deployment topology depicted in Eigure 34. The topology consists of many
inter-dependent nodes typical for an application deployment, especially a job execution workflow
on a HPC cluster where results of a job may depend on the calculation of another successfully
executed job.

The service template used in the example can be found in the xOpera github repository under
concurrency integration tests®™.

my-workstation

Execution time

Jour
!
¢
3

Figure 34 - Sample TOSCA template node topology used for testing concurrent deployment

The standard single threaded deployment is shown in Eigure 35:

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 52
© Copyright Beneficiaries of the SODALITE Project

¢ .
SR Project No 825430. ’ Sodalite
(.venv) = concurrency git:(master) X time opera deploy service.yaml
[Worker_@] Deploying my-workstation_0
[Worker_0] Deployment of my-workstation_@ complete
[Worker_0] Deploying hello-1_©
[Worker_0] Executing create on hello-1_0
[Worker_0] Executing start on hello-1_0
[Worker_0] Deployment of hello-1_0 complete
[Worker_0] Deploying hello-2_0
[Worker_0] Executing create on hello-2_0
[Worker_o0] Executing start on hello-2_0
[Worker_o0] Deployment of hello-2_©0 complete
[Worker_©] Deploying hello-3_0
[Worker_0] Executing create on hello-3_0
[Worker_0] Executing start on hello-3_0
[Worker_0] Deployment of hello-3_0 complete
[Worker_o0] Deploying hello-4_0
[Worker_o0] Executing create on hello-4 0
[Worker_0] Executing start on hello-4_ 0
[Worker_0] Deployment of hello-4_0 complete
[Worker_©] Deploying hello-5_0
[Worker_o] Executing create on hello-5_0
[Worker_o0] Executing start on hello-5_0
[Worker_0] Deployment of hello-5_0 complete
[Worker_©] Deploying hello-6_0
[Worker_0] Executing create on hello-6_0
[Worker_0] Executing start on hello-6_0
[Worker_o] Deployment of hello-6_0 complete
[Worker_o0] Deploying hello-7_0
[Worker_0] Executing create on hello-7_0
[Worker_0] Executing start on hello-7_0©
[Worker_@] Deployment of hello-7_0 complete
[Worker_©] Deploying hello-8_0
[Worker_0] Executing create on hello-8_0
[Worker_o0] Executing start on hello-8 0
[Worker_0] Deployment of hello-8 0 complete
[Worker_©] Deploying hello-9_0
[Worker_0] Executing create on hello-9_0
[Worker_0] Executing start on hello-9_0
[Worker_0] Deployment of hello-9_© complete
[Worker_0] Deploying hello-10_©
[Worker_0] Executing create on hello-10 0
[Worker_0] Executing start on hello-10_0
[Worker_©] Deployment of hello-10_0 complete
[Worker_0] Deploying hello-11_0
[Worker_0] Executing create on hello-11_0
[Worker_0] Executing start on hello-11 0
[Worker_0] Deployment of hello-11_© complete
[Worker_©] Deploying hello-12_0
[Worker_0] Executing create on hello-12_0
[Worker_0] Executing start on hello-12_0
[Worker_o] Deployment of hello-12_0 complete
[Worker_0] Deploying hello-13_0

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version
© Copyright Beneficiaries of the SODALITE Project

Page 53

‘¥ Sodalite

SN Project No 825480.

* x k
[Worker_0] Executing create on hello-13_0
[Worker_0] Executing start on hello-13 0

[Worker_0] Deployment of hello-13_0 complete
[Worker_©] Deploying hello-14 0

[Worker_0] Executing create on hello-14_0
[Worker_0] Executing start on hello-14_0
[Worker_0] Deployment of hello-14_© complete

opera deploy service.yaml 63.72s user 3.26s system 53% cpu 2:04.55 total

Figure 35 - Sample single threaded deployment of the TOSCA template

Resulting in an average deployment time of 126.24 s on 100 runs.

Sample execution with a pool of 10 workers:

(.venv) = concurrency git:(master) X time opera deploy -w 10 service.yaml

[Worker_0] Deploying my-workstation_o

[Worker_@] Deployment of my-workstation_0 complete
[Worker_1] Deploying hello-1_0

[Worker_2] Deploying hello-2_0

[Worker_3] Deploying hello-3_0

[Worker_3] Executing create on hello-3_0
[Worker_4] Deploying hello-4_0

[Worker_1] Executing create on hello-1_0
[Worker_2] Executing create on hello-2_0

[Worker_0] Deploying hello-9_©
[Worker_5] Deploying hello-8_0
[Worker_7] Deploying hello-10_0
[Worker_6] Deploying hello-14 0

[Worker_4] Executing create on hello-4_0
[Worker_o] Executing create on hello-9_0
[Worker_6] Executing create on hello-14_0
[Worker_5] Executing create on hello-8 0
[Worker_7] Executing create on hello-10_0
[Worker_4] Executing start on hello-4_0
[Worker_6] Executing start on hello-14_0
[Worker_0] Executing start on hello-9_0
[Worker_3] Executing start on hello-3_0
[Worker_7] Executing start on hello-10_0
[Worker_5] Executing start on hello-8_ 0
[Worker_1] Executing start on hello-1_0
[Worker_2] Executing start on hello-2_0

[Worker_6] Deployment of hello-14_0 complete
[Worker_4] Deployment of hello-4_0 complete

[Worker_8] Deploying hello-13_0

[Worker_8] Executing create on hello-13_0

[Worker_0] Deployment of hello-9 0 complete

[Worker_ 3] Deployment of hello-3_0 complete

[Worker_6] Deploying hello-12_©

[Worker_6] Executing create on hello-12_0

[Worker_7] Deployment of hello-10_0 complete
[Worker_1] Deployment of hello-1_0 complete

[Worker_4] Deploying hello-5_0

[Worker_9] Deploying hello-11_©

[Worker_9] Executing create on hello-11_0
[Worker_4] Executing create on hello-5_0
[Worker_5] Deployment of hello-8 0 complete
[Worker_6] Executing start on hello-12_0
[Worker_2] Deployment of hello-2_0 complete
[Worker_8] Executing start on hello-13_0
[Worker_9] Executing start on hello-11_0
[Worker_4] Executing start on hello-5_©

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version

© Copyright Beneficiaries of the SODALITE Project

Page 54

{'**} Project No 825480. /’ SOdalite

[Worker_6] Deployment of hello-12_0 complete
[Worker_8] Deployment of hello-13_0 complete
[Worker_9] Deployment of hello-11_0 complete
[Worker_4] Deployment of hello-5_0 complete
[Worker_0] Deploying hello-6_0

[Worker_o] Executing create on hello-6_0
[Worker_0] Executing start on hello-6_0
[Worker_©] Deployment of hello-6_0 complete
[Worker_ 3] Deploying hello-7_0

[Worker_3] Executing create on hello-7_0
[Worker_3] Executing start on hello-7_0
[Worker_3] Deployment of hello-7_0 complete
opera deploy -w 10 service.yaml 168.19s user 10.85s system 335% cpu 53.413 total

Figure 36 - Sample multithreaded deployment of the TOSCA template using a pool of 10 threads

The sample run shown in Eigure 36 shows the usage of distribution of an application deployment
execution among 10 workers resulting in an average deployment time of 54.712 s on 100 runs.

These results are very promising and bring a potentially real reduction in deployment time and
consequently costs, knowing that deployment and execution time and costs usually have a linear
correlation.

When applying this solution to a cloud scenario combined with the possibility of multiple
reconfigurations through redeployment the potential reduction of cost compounds.

The usage of the parallel TOSCA deployment execution in SODALITE adds a third performance
optimization dimension to the existing static and dynamic application deployment optimizations.

Blueprint deployment reconfiguration: TOSCA blueprints are defined as a topology of
inter-dependent nodes with each of the nodes implementing its own life-cycle operations. TOSCA
offers the means and definition for an application deployment, possibility of scaling through
policies and reconfiguration using substitution nodes. However in a real world scenario a DevOps
team creates a TOSCA deployment blueprint (TB1) definition with infrastructure resource
provisioning and configuration typically associated with an application deployment and it’s
configuration (I11). Usually in a lifetime of a deployed instance (Dl), applications need updates,
restarts or some kind of maintenance not easily identified during the TOSCA model creation. In
this case the only option for a DevOps team is to create an updated version of the TOSCA blueprint
(TB2) usually with some configuration defined through an inputs file (12) to substitute the existing
deployed instance (DI), but only after issuing the undeploy command through the orchestrator
which starts to execute the TOSCA undeploy workflow. In a standard TOSCA undeployment
scenario the undeployment of the whole TOSCA blueprint is executed to tear down the existing
deployed instance (D1).

What if the user wants to change only a small part of the blueprint, for instance to update the
version of a running application on one of the nodes? Undeployment of the whole instance
(D1=TB1 | 11) and after that deploying of the reconfigured instance (D2=TB2 | 12) can take
considerable service downtime.

Few TOSCA orchestrators offer this kind of functionality only in a paid tier (e.g. Yorc™), usually with
limited functionality targeting a single node or in some more complex cases a list of nodes (e.g.
Cloudify™).

During the second year of the project the experimental feature enabling the reconfiguration of an
existing deployed instance (DI) using a changed TOSCA blueprint (TB2) and a new set of inputs (12)
was implemented. The newly implemented xOpera commands diff and Update offer the xOpera
user a possibility to first calculate the difference between the existing deployed instance (DI) and

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 55
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. ? SOdalite

the deployable instance (D2’) enabling the user to check what changes will be executed to the
running deployed instance (DI) upon the execution of update, if applied. After issuing the update
command, the removal of the nodes not existing in the updated blueprint (T2) is executed,
together with changes to the nodes that have a changed set of properties, attributes or
implementation interface operations and the deployment/creation of the nodes, that are defined
in the updated topology instance (D2).

The implementation of commands diff and update in xOpera introduce the possibility for the user
to calculate the difference between two TOSCA blueprints, Instances such as a deployed one and a
deployable one D2 derived from a combined use of TB2 and configuration inputs (12).

The update command tries to execute the deployment of the computed calculation between the
two TOSCA topologies as explained in the previous section.

Consider changes in deployment topology depicted in Eigure 37. All nodes are hosted on the same
workstation that remains unchanged. One node is deleted, one is added, one has 2 changed
properties and one remains the same.

Service templates used, in this example, are simplified versions of the templates that can be found
in the xOpera github repository under compare integration tests™.

my-workstation

v L4 L4

hello-3
(deleted)

my-workstation

4 L4 v

hello-1 hello-2 hello-4
(changed) (unchanged) (added)

Figure 37 - Sample deployment topology changes

The output of the diff command would be:

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 56
© Copyright Beneficiaries of the SODALITE Project

9% .
{ } Project No 825480. ’SOdallte

nodes:
added:
- hello-4
changed:
hello-1:
capabilities:
test:
properties:
testl:

deleted:
- hello-3

Figure 38 - Sample deployment showing the output of the diff command for topology changes

If the update command is executed, hello-4 node would be deployed, hello-3 node would be
undeployed and hello-1 node would be undeployed and then deployed.

5.1.1.2 Code Quality

Current version of the xOpera orchestrator is 0.6.4 with a new minor version release on its way. The
development of xOpera is steady and continuous supported by github toolset with added
discussions for an easier planning of feature development. The development of xOpera is official
and done through open discussion of features/contributions and implementation suited for the
most open source repositories. Since xOpera is an upstream project, not owned by SODALITE, it
currently does not use SonarCloud for code quality assessment, therefore no Sonarcloud QA can be
added here at this point.

5.1.1.3 Next steps

The xOpera orchestrator is bound to be a lightweight TOSCA compliant orchestrator meaning that
new TOSCA versions will be supported and features added.

Many new features are planned and described in the xOpera github issues®. Some of the most
important features from SODALITE's point of view being Improving redeployment, adding TOSCA
policy enforcement implementation, and improving secret handling.

5.1.2 xOpera REST API

Since the initial version of the xOpera REST API described in D5.1, there has been significant
refactoring and improvements. The implementation of this component expands beyond just
offering a REST API interface to xOpera commands as it implements deployment workflows,
persists data and information about the deployed TOSCA blueprints by storing sessions for
deployed TOSCA blueprints. During the second year of the project, several important upgrades
have been made to improve the support for sharing and persisting the blueprint deployed,
additional command interfaces were added for newly introduced xOpera commands and support
for easier transition upgrades between xOpera versions added.

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 57
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. /’ SOdalite

5.1.2.1 Improvements

In this section we focus on the most prominent features implemented in the xOpera REST in the
second year of the project.

The usage of the APl was significantly improved with the implementation of the git plugin which is
able to use external publicly available git services to securely store and version the TOSCA
blueprints registered in the API calls. This functionality was further improved by enabling the
shared usage of the blueprint between the users, enabling a seamless collaboration through the
usage of secure private repositories handled by public git SaaS like github.com, gitlab.com or
private ones like gitlab.xlab.si.

xOpera REST APl implements the improved CI/CD workflow enabling an automated deployment of
the dockerized component on the testbed for staging purposes. In this workflow xOpera is used by
jenkins to deploy the TOSCA blueprint describing xOpera REST APl deployment and configuration
on the SODALITE staging testbed.

Since [D5.1] the REST APl was refactored to use xOpera as Python Library API for execution of
deployment, undeployment instead of executing through a subprocess, heavily improving
efficiency of the execution.

A new connexion library was introduced instead of flask-restplus library, which was not being
supported any more, for enabling a simpler API design, OpenAPI 3.0 support, implementation and
Ul for the REST API calls.

For reverse proxy, nginx® was changed with traefik’ to ease the usage of the dockerized REST API
with simple labeling and to enable a simpler transition to Kubernetes (k8s) deployments.
Additionally, in this period, support for both k8s and AWS libraries and dependencies were added
to the REST API to support the execution of TOSCA/Ansible playbooks for these platforms.
Important security aspects were improved using IAM authorization for registering and deployment
of the blueprints through keycloak token introspection. Additionally secret handling was improved
by using Hashicorp Vault to support handling secrets at rest and in the deployment workflows.

xOpera REST APl was extended to provide support for diff and update xOpera commands. Namely,
there is a possibility to compare two previously created TOSCA blueprints and reconfigure the
deployment of the blueprint according to the rules presented in Section 5.1.2 Improvements, under
Blueprint deployment reconfiguration.

xOpera API can be also used as a standalone offering the user a simple and easily understandable
way to register, deploy, undeploy, persist data and handle the sharing of TOSCA blueprints.

The code and extensive information on how to build and use the xOpera is provided in the github

repository: https://github.com/SODALITE-EU/xopera-rest-api.

5.1.2.2 Code Quality

Since the first xOpera REST API release automatic code quality checks were introduced using the
online SonarCloud tool. Substantial improvements to the code were applied after enabling the
SonarCloud code analysis of the xopera-rest-api component. One of the most important being the
extension of the code coverage unit tests and reduction of code repetitions.

xopera-rest-api

Last analysis: January 28, 2021, 11.59 AM
0Q® 0 0.0% @ 52 @ O 824% Q 0.0% 6.2k @
¥¥ Bugs B Vulnerabilities @ Hotspots Reviewed @ Code Smells Coverage Duplications XML, Python

Figure 39 - Code quality report for xopera-rest-api
D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 58

© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/xopera-rest-api

{***} Project No 825480. /’ SOdalite

At the time of this writing the quality of the code in the xOpera REST API github repository was
solida, giving some room for improvement on reducing security hotspots and code smells as

shown in Eigure 39.

5.1.2.3 Next steps

Improving security and integration with the calling components and the ones using xOpera REST
API through various workflows is one of the most prominent next steps in the development of this
component.

Additionally, adding support for OpenFaaS targeted executions which is planned in year 3 of the
project, improved interface covering newly introduced commands in xOpera for feature support
and the possibility to further improve high availability, possibly through Kubernetes cluster
deployment.

5.2 Monitoring

This section describes the updates implemented in the following pre-existing monitoring
components (reported in D5.1).

5.2.1 Prometheus/Grafana

5.2.1.1 Improvements

In the initial version described in [D5.1], a Prometheus instance of the SODALITE architecture was
deployed in a VM inside the OpenStack cloud testbed. It was prepared to automatically discover
and monitor OpenStack resources thanks to a specific configuration hook for that supported by
Prometheus. However, fixed endpoints for supported exporters had to be previously known and set
in the configuration file. This was the case of the Skydive exporter included in that initial version. To
overcome this rigid monitoring configuration, a dynamic monitoring approach was designed and
implemented (see Section 4.3). Moreover, neither alerting nor recording monitoring rule files were
supported (see section 4.7).

Additionally, an instance of the Monitoring dashboard, Grafana, was deployed within the same VM
where Prometheus was installed.

In this new M24 release, the Prometheus component is declared in a TOSCA blueprint that starts a
Docker container using the official Prometheus image®. A template for the Prometheus
configuration file® is also provided with the blueprint. When the Prometheus component is
deployed, this template becomes a valid configuration file that connects Prometheus to the other
components of the monitoring system. Thus, in this intermediate version of the monitoring system,
both the OpenStack discovery hook and the explicit endpoint references are replaced in the
Prometheus configuration with the lines needed to make the Prometheus instance query Consul for
any exporter (node exporters'®, IPMI exporters™, HPC exporters'®, Skydive exporters'®) alive in the
computing infrastructure (see Section 4.3). Rule files are retrieved from a folder'™ on which a
Docker volume that is shared with the Rules Server is mounted. An endpoint to the Alert Manager'®
component is also set (see Section 4.7).

5.2.1.2 Code quality

As commented in section 4.2, code quality can neither be reported for Prometheus and Grafana, as
they are third-party components, that are integrated and deployed (currently for Prometheus)

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 59
© Copyright Beneficiaries of the SODALITE Project

9% .
{ } Project No 825480. ’SOdallte

within the Runtime Layer by the orchestrator, using TOSCA blueprints and Ansible playbooks, which
are not analysed by SonarCloud. They are part of the monitoring-system repository’®, whose QA

report is presented in Eigure 40.
monitoring-system

Last analysis: January 6, 2021, 11:21 AM

0 ® 7@ 0.0% @ 0® O 0.0% 64 @

E | Bugs B Vulnerabiliies @ Hotspots Reviewed & Code Smells Duplications Python

Figure 40 - Code quality report for Monitoring

5.2.1.3 Next steps

Alike Prometheus, Grafana will be deployed into the Runtime Layer by the orchestrator, by using the
SODALITE TOSCA blueprint and its Ansible playbooks its lifecycle. Moreover, Grafana dashboard for
target infrastructures and execution environments will be configured based on metrics collected
by associated exporters. On demand support, testing and bug fixing for automatic configuration
and deployment of Prometheus within the SODALITE stack, using the Orchestrator, will be provided
in following development phases.

5.5.2 Node exporter

5.5.2.1 Improvements

As described in section 4.5.2 of [D5.1], the Node Exporter is part of the Prometheus project and it
exposes CPU, memory, network and OS metrics for any machine on which it is installed. The source
code in Go is available in its official Github repository'”, although the compiled binaries can be

downloaded from the download section of the Prometheus website!®.

Regarding its integration with the monitoring system, it is still automatically deployed with every
new virtual machine created and then added to the monitoring targets. However, the Ansible
playbook that creates the VM has been enriched for not only downloading and installing the Node
Exporter but also for creating the JSON payload'® that defines the service from a template™® and
registering it in the Consul server*.

5.5.2.2 Code Quality
Node Exporter is shipped within Prometheus. See section 5.2.1.2.

5.5.2.3 Next Steps

On demand support, testing and bug fixing for automatic configuration and deployment of the
Node Exporter in target infrastructures, using the Orchestrator, will be provided in following
development phases.

5.5.3 IPMI exporter

5.5.3.1 Improvements

IPMI Exporter was implemented and integrated for the initial version of the runtime described in
D5.1. As section 4.4.1 of D5.1 states, this exporter is designed to expose for Prometheus the power
consumption metrics of the machine it is running in, achieving this by exporting the measurement
given by a physical sensor and obtained via “ipmi_sensor” command.

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 60
© Copyright Beneficiaries of the SODALITE Project

9% .
{ } Project No 825480. ’SOdallte

There are no changes in its implementation (SODALITE-EU/ipmi-exporter™” repo in Github) for this
intermediate version of the runtime, but now the integration with the monitoring system relies on
its registration as a service in Consul instead of an explicit endpoint configuration in the
Prometheus configuration file.

5.1.1.2 Code Quality

The code quality report for IPMI Exporter is shown in Eigure 41, not manifesting significant quality
issues.

ipmi-exporter

Last analysis: August 29, 2020, 11:31 PM

0® 0® -0 10 QO 0.0% 50 @

13 Bugs B Vulnerabiliies) Hotspots Reviewed & Ccode Smells Duplications

Figure 41 - Code quality report for IPMI exporter

5.1.1.3 Next Steps

On demand support, testing and bug fixing for automatic configuration and deployment of the IPMI
Exporter in target infrastructures, using the Orchestrator, will be provided in following
development phases. Additional IPMI metrics required by use cases will be incorporated.

5.5.4 Skydive exporter

5.5.4.1 Improvements

In the initial version described in [D5.1], the Skydive exporter was registered statically in the
Prometheus configuration file. Additionally, the skydive components were configured and brought
up manually.

In the current version, a Consul server is used to register exporters that provide metrics to
Prometheus. Both the Skydive analyzer and the skydive-prometheus connector were incorporated
into the SODALITE platform blueprint to be brought up automatically with the rest of the SODALITE
platform, and the skydive-prometheus connector'”® registers itself with the Consul server to be
connected to Prometheus. In order to automate the entire operation, the skydive analyzer and
skydive-prometheus connector have to be packaged as containers. The skydive-prometheus
connector code was hardened, pushed upstream to the skydive project, and code was added in the
SODALITE tree to create a container in the SODALITE repository.

5.5.4.2 Code Quality

Code Quality for Skydive and its extensions cannot be reported, as they are third-party
components, and they do not provide the SonarCloud statistics.

5.5.4.3 Next Steps

We plan to extend the types of metrics that are collected and reported by the skydive-prometheus
exporter. At present, the network metrics are simply reported, but no action is taken based on the
network metrics. We aim to be able to recognize some network anomaly or bottleneck, and to be
able to recommend a change in the configuration to improve performance.

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 61
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. /’ SOdalite

6 Updated Runtime Layer Development Plan (Atos, All)

This section summarizes the development plan for the incoming M30 and M36 releases of the
Runtime Layer, broken down into its different components. Additional details for each planned
feature can be found in Sections 4 and 5.

6.1 M30 Release

Orchestration

Component Planned features

xOpera Enforcement of TOSCA policies, security,

Improved parser validation output,

REST API support for newly added commands in xOpera,
Improved support for reconfiguration scenarios - update
method in interface that would allow not to remove

instances

xopera-rest-api Support for OpenFaaS,

Improved secret handling,

REST API support for newly added commands in xOpera,
Improved integration with refactoring,

Improved support for Kubernetes,

Support for GoogleCloud

ALDE e Improve integration with refactoring,
Improve container deployment support,
Enforce of TOSCA integration,

Improve Quality & Tests

Table 3 - Runtime Orchestration Layer Release Plan for M30

Monitoring
Component Planned features
Prometheus, e Automation of the registering and deregistering processes
Consul, within the orchestrator: testing full integration with
Grafana orchestrator,

e Automatic configuration of Monitoring dashboards
(Grafana) for monitoring exporters and execution targets,

Alert Manager Management of subscriptions,
Management of specific monitoring alerts,
Broadcasting of monitoring alerts,

Investigation of Grafana alerting feature

Node Exporter e Automation of the registering and deregistering processes
within the orchestrator: testing full integration with
orchestrator

IPMI Exporter e Automation of the registering and deregistering processes

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 62
© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

¥ Sodalite

within the orchestrator,

e Automation of exporter configuration
HPC Exporter e Automation of the registering and deregistering processes
within the orchestrator: testing full integration with
orchestrator,

e Automation of exporter configuration: addressing
integration issues related to the lifetime, scope, number
and containerization of HPC exporter

Skydive Exporter e Additional metrics reported; use metrics for feedback to
refactor

Edge Monitoring e Dynamic discovery and registration of platform- and
device-specific alerting rules,

e Extension of supported platforms / accelerators.

Table 4 - Runtime Monitoring Layer Release Plan for M30

Refactoring
Component Planned features
Deployment Refactorer e Improved the policy language to support all deployment
adaptation scenarios of SODALITE use cases,
e Optimization of deployment configuration selection,
e Extensive validation of deployment switching capabilities
with all relevant SODALITE Use Cases,
e Service Network Anomaly Dataset and ML models for
Service Network Anomaly Detection
Node Manager e Improved integration with SODALITE infrastructure,
e Exploitation of SODALITE monitoring,
e Allowing deployment of Node Manager with the TOSCA
SODALITE deployment blueprint (testing will be carried out
on test-bed)
Refactoring Option e Improved Matchmaking based on TOSCA Policies,
Discoverer e Improved Integration with Deployment Refactorer

Table 5 - Runtime Refactoring Layer Release Plan for M30

6.2 M36 Release

Orchestration
Component Planned features
xOpera e Improved handling of secretes through local Ansible Vault,
e Support TOSCA 2.0 simple yaml standard
xopera-rest-api e Improved support for secure storage handling, REST API

support for newly added commands in xOpera

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version

Page 63

© Copyright Beneficiaries of the SODALITE Project

SN Project No 825480.

¥ Sodalite

ALDE e Improve integration with refactoring,
e Improve container deployment support,
e Enforce of TOSCA integration,
e Improve Quality & Tests
Table 6 - Runtime Orchestration Layer Release Plan for M36
Monitoring
Component Planned features
Prometheus, e Specialized Monitoring dashboards (Grafana) for target
Consul, infrastructures and execution environments required by
Grafana, use cases
Alert Manager e Management of use-case specific monitoring alerts,
e Integration of Grafana alerting feature
Node Exporter e Configure new Node Exporter metrics demanded by use
cases
IPMI Exporter e Implementation of new IPMI metrics required by use cases
HPC Exporter e Collection of HPC queue metrics for PBSPro and SLURM
schedulers
Skydive Exporter e Selective reporting of metrics
Edge Monitoring e Hierarchical / Federated Prometheus and Alertmanager

instances for node-local and cluster-wide monitoring &
alerting.

Table 7 - Runtime Monitoring Layer Release Plan for M36

Refactoring
Component Planned features
Deployment Refactorer e Improved Integration of Deployment Refactorer with Node
Manager,
e Support and Validate Deployment Refactoring Scenarios in
all SODALITE Use Cases,
e If possible, given the project resource constraints and other
commitments, apply MLOps principles for Machine
Learning Pipelines (Performance Prediction and Anomaly
Detection)
Node Manager e Integration with Deployment Refactorer for coordinated
and improved resource management
Refactoring Option e Support and Validate with Dynamic Resource Discovery and
Discoverer Composition Scenarios in all SODALITE Use Cases
D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 64

© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. /’ SOdalite

Table 8 - Runtime Refactoring Layer Release Plan for M36

7 Conclusion

This deliverable has reported on the intermediate release (M24) of the SODALITE Runtime Layer,
emphasizing on the main new features that have been incorporated since the initial release
reported in D5.1, but also reporting on the progress achieved on existing components.

The quality of the developed components, their interoperability and the Runtime Layer
deployment as part of the SODALITE stack have been largely improved by the adoption of methods
and toolsets for automatic building and delivery as well as for QA assessment.

The Orchestration Layer has incorporated support for the deployment of container-based
applications in more Cloud infrastructures, including Kubernetes and AWS. It is also now
supporting the deployment of job-based orchestrations in HPC clusters, mediated by schedulers
such as SLURM and PBS Pro/TORQUE. Moreover, thanks to the collaboration with the RADON
project, the orchestration has incorporated support for multiplatform, hybrid data management,
which will be extended to HPC environments in next releases.

The Monitoring Layer has been refactored to support dynamic monitoring with the adjustable
allocation and configuration of probes in multiplatforms, including now support to monitor jobs in
HPC environments. Moreover, support for defining alerting rules and broadcast alerts to
subscribers within the SODALITE Runtime layer has also been incorporated.

The Refactoring Layer adds support to adapt the deployment topology of a running application in
response to its anomalous behavior, detected by monitoring. The prediction of the performance of
computed deployment alternatives is supported by ML models, which can evaluate the different
available deployment variants and switch, at runtime, the selection among them. The dynamic
discovery of nodes was improved to support policies. Node Manager was implemented to support
runtime resource management, including load balancing, supervision of resource contention, and
control of vertical scalability.

The main challenges foreseen in the further development the platform are: a) the complete
integration of the Runtime Layer within the overall SODALITE stack, providing runtime
orchestration, monitoring and refactoring support to the use cases, b) the incorporation of new
required infrastructures, such as OpenFaaS and Google Cloud, to the set of supported target
deployment environments in orchestration and monitoring, c) the specialization of alerting to
detect runtime anomalies for adaptation scenarios, d) the specialization of monitoring
dashboards, and e) the support of all redeployment adaptation scenarios. Implementations
addressing these challenges will be progressively incorporated into the M30 and M36 releases of
the Runtime Layer.

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 65
© Copyright Beneficiaries of the SODALITE Project

9% .
{ } Project No 825480. ’SOdallte

8 References

. D3.1-First version of ontologies and semantic repository. SODALITE Technical Deliverable 2020.

. D4.2 - 1aC Management - intermediate version. SODALITE Technical Deliverable 2021.

.D5.1 - Application deployment and dynamic runtime - initial version. SODALITE Technical Deliverable 2020.
. https://radon-h2020.eu/

. https://www.oasis-open.org/committees/tosca

. D1.4 - Management report, second version. SODALITE Technical Deliverable, 2020

https://www.jenkins.io/ The leading open source automation server, Jenkins provides hundreds of
plugins to support building, deploying and automating any project.

8. D6.3 - Intermediate Implementation and Evaluation of the SODALITE Platform and Use Cases. SODALITE
Technical Deliverable 2021.

9. https://sonarcloud.io/ Code Quality assessment online tool Enhance - Your Workflow with Continuous
Code Quality

10. https://docs.sonarqube.org/latest/user-guide/security-hotspots/

11. Not Available in M24. They will be available in the next release.

12. http://tango-project.eu/

13. https://github.com/TANGO-Project/alde

14. D2.2 - Requirements, KPls, evaluation plan and architecture - Intermediate version. SODALITE Technical
Deliverable, 2021

15. https://docs.globus.org/

16. https://github.com/onedata/onedata

17. https://lcgdm.web.cern.ch/dynafed-dynamic-federation-project

18. https://github.com/cern-fts/fts3

19. https://github.com/cern-fts/gfal2

20. https://github.com/rucio/rucio

21. https://github.com/rclone/rclone

22. https://github.com/scality/Zenko

23. https://github.com/sodafoundation/multi-cloud

24. https://mqtt.org/

25. https://github.com/eclipse/mosquitto

26. https://github.com/hivemqg/hivemqg-community-edition

27. https://github.com/apache/kafka

28. https://github.com/fledge-iot/fledge

29. https://github.com/minio/minio

30. https://github.com/apache/nifi

31. https://github.com/streamsets/datacollector

32. https://radon-h2020.eu/

33. https://github.com/radon-h2020/radon-particles

34. Deliverable D5.5 -Data pipeline orchestration I, Public Deliverable, RADON consortium, 2019

35. D7.4 - Impact Generation Report: Year 2. SODALITE Deliverable 2021.

36. https://datapipeline-plugin.readthedocs.io/en/latest/

37. https://prometheus.io/docs/introduction/overview/

38. https://www.consul.io/docs/intro#introduction-to-consul

39. https://www.consul.io/docs/intro#introduction-to-consul

40. https://www.consul.io/docs/k8s/service-sync

41. https://prometheus.io/docs/prometheus/latest/configuration/configuration/#openstack_sd_config

42.
https://github.com/SODALITE-EU/monitoring-system/blob/master/consul-registration-poc/openstack/node
-exporter/xopera/playbooks/node_exporter.json.tmpl

43. https://github.com/SODALITE-EU/monitoring-system

44. https://github.com/SODALITE-EU/monitoring-system/tree/master/consul-registration-poc/openstack
45,
https://github.com/SODALITE-EU/iac-platform-stack/blob/7b65739d4ff5c334654ec9c1848ee6ff131b62ca/do
cker-local/service.yaml#L639-L650

o Ul WN R

~

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 66
© Copyright Beneficiaries of the SODALITE Project

https://www.oasis-open.org/committees/tosca
https://www.jenkins.io/
https://sonarcloud.io/
https://docs.sonarqube.org/latest/user-guide/security-hotspots/
http://tango-project.eu/
https://github.com/TANGO-Project/alde
https://docs.globus.org/
https://github.com/onedata/onedata
https://lcgdm.web.cern.ch/dynafed-dynamic-federation-project
https://github.com/cern-fts/fts3
https://github.com/cern-fts/gfal2
https://github.com/rucio/rucio
https://github.com/rclone/rclone
https://github.com/scality/Zenko
https://github.com/sodafoundation/multi-cloud
https://mqtt.org/
https://github.com/eclipse/mosquitto
https://github.com/hivemq/hivemq-community-edition
https://github.com/apache/kafka
https://github.com/fledge-iot/fledge
https://github.com/minio/minio
https://github.com/apache/nifi
https://github.com/streamsets/datacollector
https://radon-h2020.eu/
https://github.com/radon-h2020/radon-particles
https://datapipeline-plugin.readthedocs.io/en/latest/
https://prometheus.io/docs/introduction/overview/

{***} Project No 825480. /’ SOdalite

46.
https://github.com/SODALITE-EU/monitoring-system/blob/master/consul-registration-poc/openstack/node
-exporter/xopera/playbooks/vm/create.yml

47. Evans, T., Barth, W. L., Browne, J. C., DelLeon, R. L., Furlani, T. R, Gallo, S. M,, ... & Patra, A. K. (2014,
November). Comprehensive resource use monitoring for hpc systems with tacc stats. In 2014 First
International Workshop on HPC User Support Tools (pp. 13-21). IEEE.

48. Moore, C. L., Khalsa, P. S, Yilk, T. A., & Mason, M. (2015, September). Monitoring high performance
computing systems for the end user. In 2015 IEEE International Conference on Cluster Computing (pp.
714-716). IEEE.

49. Externally observing the HPC environment, therefore minimizing the consumption of HPC resources

50. Probes are dynamically configured to target the monitoring of submitted jobs, compatible with the HPC
scheduler

51. Rohl, T., Eitzinger, J., Hager, G., & Wellein, G. (2017, September). LIKWID Monitoring Stack: A flexible
framework enabling job specific performance monitoring for the masses. In 2017 IEEE International
Conference on Cluster Computing (CLUSTER) (pp. 781-784). IEEE.

52. https://github.com/SODALITE-EU/hpc-exporter

53. https://github.com/SODALITE-EU/hpc-exporter/blob/master/docker/Dockerfile

54. https://www.pcwdld.com/best-network-monitoring-tools-and-software

55. https://github.com/skydive-project/skydive-flow-exporter/tree/master/prom_sky_con

56. https://github.com/skydive-project/skydive-flow-exporter

57. https://github.com/skydive-project/skydive-flow-exporter/tree/master/prom_sky_con

58. http://skydive.network/blog/prometheus-connector.html

59. http://skydive.network/blog/exporters.html

60.
https://github.com/SODALITE-EU/iac-platform-stack/blob/7b65739d4ff5c334654ec9c1848ee6ff131b62ca/do
cker-local/service.yaml#L529-L577

61. https://flask.palletsprojects.com/en/1.1.x/

62. https://gunicorn.org/

63. https://registry.hub.docker.com/r/sodaliteh2020/monitoring-system-ruleserver/tags

64. https://github.com/SODALITE-EU/monitoring-system/tree/master/ruleserver

65. https://github.com/SODALITE-EU/monitoring-system

66. Fowler, Martin. Refactoring: improving the design of existing code. Addison-Wesley Professional, 2018.
67. Pereira, Juliana Alves, et al. "Learning software configuration spaces: A systematic literature review."
arXiv preprint arXiv:1906.03018 (2019).

68. De Lemos, Rogério, et al. "Software engineering for self-adaptive systems: A second research roadmap."
Software Engineering for Self-Adaptive Systems Il. Springer, Berlin, Heidelberg, 2013. 1-32.

69. N. Esfahani, A. Elkhodary, and S. Malek, “A learning-based framework for engineering
feature-oriented self-adaptive software systems,”IEEE TSE, vol. 39, no. 11, pp. 1467-1493, 2013.

70. N. J. Yadwadkaret al.,, “Selecting the best vm across multiple public clouds: A data-driven
performance modeling approach,”inthe 2017 Symposium on Cloud Computing, 2017, pp. 452-465

71. Chandola, Varun, Arindam Banerjee, and Vipin Kumar. "Anomaly detection: A survey." ACM computing
surveys (CSUR) 41.3 (2009): 1-58.

72. Lomio, Francesco, et al. "RARE: a labeled dataset for cloud-native memory anomalies." Proceedings of
the 4th ACM SIGSOFT International Workshop on Machine-Learning Techniques for Software-Quality
Evaluation. 2020.

73. Blair, Gordon, Nelly Bencomo, and Robert B. France. "Models@ run. time." Computer 42.10 (2009): 22-27
74. Berger, Thorsten, et al. "A survey of variability modeling in industrial practice." Proceedings of the
Seventh International Workshop on Variability Modelling of Software-intensive Systems. 2013.

75. https://featureide.github.io/

76. C. Kaltenecker, A. Grebhahn, N. Siegmund, and S. Apel, “The interplay of sampling and machine
learning for software performance prediction,”|EEE Software, vol. 37, no. 4, pp. 58-66, 2020.

77. Kumara, Indika, et al. "Quality Assurance of Heterogeneous Applications: The SODALITE Approach."”
European Conference on Service-Oriented and Cloud Computing (ESOCC 2020), Volume 2. Springer, Cham,
2020 (in print).

78. Kayes, A. S. M., et al. "A Survey of Context-Aware Access Control Mechanisms for Cloud and Fog
Networks: Taxonomy and Open Research Issues." Sensors 20.9 (2020): 2464.

79. https://github.com/IndikaKuma/SODALITEDEMOS

80. https://github.com/uillianluiz/RUBIS

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 67
© Copyright Beneficiaries of the SODALITE Project

{***} Project No 825480. /’ SOdalite

81. https://github.com/DescartesResearch/TeaStore

82. Eismann, Simon, et al. "TeaStore: A Micro-Service Reference Application for Cloud Researchers." 2018
IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion). IEEE,
2018.

83. L. Baresi, S. Guinea, A. Leva, and G. Quattrocchi, “A Discrete- Time Feedback Controller for Containerized
Cloud Applications,” in Proceedings of the 2016 24th Int. Symposium on Foundations of Software
Engineering. ACM, 2016, pp. 217-228.

84. J.Ding,R.Cao,l.Saravanan,N.Morris,andC.Stewart,“Characterizing Service Level Objectives for Cloud
Services: Realities and Myths,” in 2019 IEEE Int. Conf. on Autonomic Computing (ICAC). IEEE, 2019, pp.
200-206.

85. R. Nozal, J. L. Bosque, and R. Beivide, “EngineCL: Usability and Performance in Heterogeneous
Computing,” Future Gener. Comput. Syst., vol. 107, pp. 522-537, 2020.

86. Y. N. Khalid, M. Aleem, R. Prodan, M. A. Igbal, and M. A. Islam, “E-OSched: a load balancing scheduler for
heterogeneous multicores,” J. Supercomput., vol. 74, no. 10, pp. 5399-5431, 2018.

87. L. Chen, X. Huo, and G. Agrawal, “Accelerating MapReduce on a coupled CPU-GPU architecture,” in SC
Conf. on High Performance Computing Networking, Storage and Analysis, J. K. Hollingsworth, Ed. IEEE/ACM,
2012, pp. 1-11.

88. S. Mittal and J. S. Vetter, “A Survey of CPU-GPU Heterogeneous Computing Techniques,” ACM Comput.
Surv.,vol. 47, no. 4, pp. 69:1- 69:35, 2015.

89. Brogi, Antonio, and Jacopo Soldani. "Finding available services in TOSCA-compliant clouds." Science of
Computer Programming 115 (2016): 177-198.

90.
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/csprd01/TOSCA-Simple-Profile-YAML-v1
.3-csprd01.html

91. https://github.com/xlab-si/xopera-opera/blob/master/tests/integration/concurrency/service.yaml

92. https://github.com/ystia/yorc

93. https://cloudify.co/

94. https://github.com/xlab-si/xopera-opera/tree/master/tests/integration/compare

95. https://github.com/xlab-si/xopera-opera/issues

96. https://nginx.org/en/

97. https://traefik.io/ The Cloud Native Application Proxy - simplify networking complexity while designing,
deploying, and operating applications.

98. https://hub.docker.com/r/prom/prometheus

99.
https://github.com/SODALITE-EU/iac-platform-stack/blob/master/library/prometheus/playbooks/templates
/prometheus.yaml.tmpl

100.
https://github.com/SODALITE-EU/iac-platform-stack/blob/master/library/prometheus/playbooks/templates
/prometheus.yaml.tmpl#L20

101.
https://github.com/SODALITE-EU/iac-platform-stack/blob/master/library/prometheus/playbooks/templates
/prometheus.yaml.tmpl#L25

102.
https://github.com/SODALITE-EU/iac-platform-stack/blob/master/library/prometheus/playbooks/templates
/prometheus.yaml.tmpl#L30

103.
https://github.com/SODALITE-EU/iac-platform-stack/blob/master/library/prometheus/playbooks/templates
/prometheus.yaml.tmpl#L35

104.
https://github.com/SODALITE-EU/iac-platform-stack/blob/master/library/prometheus/playbooks/templates
/prometheus.yaml.tmpl#L12

105.
https://github.com/SODALITE-EU/iac-platform-stack/blob/master/library/prometheus/playbooks/templates
/prometheus.yaml.tmpl#L9

106. https://github.com/SODALITE-EU/monitoring-system

107. https://github.com/prometheus/node_exporter

108. https://prometheus.io/download/#node_exporter

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 68
© Copyright Beneficiaries of the SODALITE Project

https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/csprd01/TOSCA-Simple-Profile-YAML-v1.3-csprd01.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/csprd01/TOSCA-Simple-Profile-YAML-v1.3-csprd01.html
https://github.com/ystia/yorc
https://cloudify.co/
https://nginx.org/en/
https://traefik.io/

{***} Project No 825480. ? SOdalite

109.
https://github.com/SODALITE-EU/monitoring-system/blob/master/consul-registration-poc/openstack/node
-exporter/xopera/playbooks/vm/create.yml#L127-L134

110.
https://github.com/SODALITE-EU/monitoring-system/blob/master/consul-registration-poc/openstack/node
-exporter/xopera/playbooks/node_exporter.json.tmpl

111.
https://github.com/SODALITE-EU/monitoring-system/blob/master/consul-registration-poc/openstack/node
-exporter/xopera/playbooks/vm/create.yml#L136-L137

112. https://github.com/SODALITE-EU/ipmi-exporter

113.
https://github.com/SODALITE-EU/iac-platform-stack/blob/master/docker-local/service.yam|#L643-L653

D5.2 - Application Deployment and Dynamic Runtime - Intermediate Version Page 69
© Copyright Beneficiaries of the SODALITE Project

