C’ Sodalite

SOftware Defined AppLication Infrastructures managemenT and Engineering

SODALITE Framework -
Second Version

D6.6

IBM and POLIMI
31.01.2021

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 825480.

SN Project No 825480. ? Sodalite

Deliverable data
Deliverable D6.6 SODALITE framework - Second version
Kalman Meth (IBM)
Indika Kumara (JADS)
Zoe Vasileiou, Vasileios-Rafahl Xefteris, Savvas Tzanakis, Anastasios
Karakostas, Spyridon Symeonidis (CERTH)
Jesus Gorrofiogoitia, Lucas Pelegrin (ATOS)
Authors . . .
Giovanni Quattrocchi (POLIMI)
Dragan Radolovi¢, Nejc Bat (XLAB)
Alfio Lazzaro (HPE)
Saloni Kyal (POLIMI)
Paul Mundt (ADPT)
Reviewers Nejc Bat (XLAB)
Kamil Tokmakov (USTUTT)
Dissemination Public, DEM
level
Name Change Date
Kalman Meth (IBM) Outline created 31.10.2020
Components Info updated;
Improved features described;
History of Al Introduction/conclusion 13.01.2021
changes updated
All final release 28.01.2021
Acknowledgement

The work described in this document has been conducted within the Research & Innovation action
SODALITE (project no. 825480), started in February 2019, and co-funded by the European
Commission under the Information and Communication Technologies (ICT) theme of the H2020
framework programme (H2020-1CT-16-2018: Software Technologies)

D6.6 SODALITE framework - second version Page 1
© Copyright Beneficiaries of the SODALITE Project

* Project No 825480. ? Sodalite

Table of Contents
Table of Contents 2
List Of Images 9
List Of Tables 9
Executive Summary 11
Glossary 12
1 Introduction 13
1.1 Structure of the Document 14
1.2 SODALITE Context and Goals 14
1.3 Overview of SODALITE architecture 15
1.3.1 Modelling Layer 15
1.3.2 Infrastructure as Code (laC) Layer 16
1.3.3 Runtime Layer 17
2 Improved Integrated Prototype - Milestone 6 18
2.1 Integrated Prototype Improved Features 20
2.2 SODALITE Security Support 20
2.2.1 1AM Authentication and Introspection 21
2.2.2 Secrets Management 21
2.3 Deploying the Integrated Prototype 21
2.3.1 Deploying the Sodalite Stack via Common blueprint 21
2.3.2 Deploying the IDE 21
2.4 Running the Integrated Prototype 21
2.5 Supported Infrastructures 22
2.6 Common development/testing tools/methods used in the project 22
2.7 How can an external user exploit Sodalite? 22
2.7.1 Tutorial for using the SODALITE platform 22
3 Modelling Layer 23
3.1 Semantic Knowledge Base 23
3.1.1 Description of component 23
3.1.2 Status of implementation 23
3.1.3 Location of repository and how to build the code 23
3.1.4 Dependency of component on other components and stand-alone usage of
component 23
3.2 Semantic Reasoner 23
3.2.1 Description of component 23
3.2.2 Status of implementation 24
3.2.3 Location of repository and how to build the code 24
3.2.4 Dependency of component on other components and stand-alone usage of
component 24
D6.6 SODALITE framework - second version Page 2

© Copyright Beneficiaries of the SODALITE Project

* Project No 825480. ? Sodalite

3.3 SODALITE IDE 24
3.3.1 Description of component 24
3.3.2 Status of implementation 25
3.3.3 Location of repository and how to build the code 25
3.3.4 Dependency of component on other components and stand-alone usage of
component 25

4 laC Management Components 26

4.1 Abstract Model Parser 26
4.1.1 Description of component 26
4.1.2 Status of implementation 26
4.1.3 Location of repository and how to build the code 26
4.1.4 Dependency of component on other components and stand-alone usage of
component 26

4.2 laC Blueprint Builder 26
4.2.1 Description of component 26
4.2.2 Status of implementation 26
4.2.3 Location of repository and how to build the code 26
4.2.4 Dependency of component on other components and stand-alone usage of
component 27

4.3 Runtime Image Builder 27
4.3.1 Description of component 27
4.3.2 Status of implementation 27
4.3.3 Location of repository and how to build the code 27
4.3.4 Dependency of component on other components and stand-alone usage of
component 27

4.4 Concrete Image Builder 27
4.4.1 Description of component 27
4.4.2 Status of implementation 27
4.4.3 Location of repository and how to build the code 28
4.4.4 Dependency of component on other components and stand-alone usage of
component 28

4.5 Image Registry 28
4.5.1 Description of component 28
4.5.2 Status of implementation 28
4.5.3 Location of repository and how to build the code 28
4.5.4 Dependency of component on other components and stand-alone usage of
component 28

4.6 Application Optimiser 28
4.6.1 Description of component 28
4.6.2 Status of implementation 28
4.6.3 Location of repository and how to build the code 28
4.6.4 Dependency of component on other components and stand-alone usage of
component 28

D6.6 SODALITE framework - second version Page 3

© Copyright Beneficiaries of the SODALITE Project

* Project No 825480. ? Sodalite

4.7 1aC Verifier 29
4.7.1 Description of component 29
4.7.2 Status of implementation 29
4.7.3 Location of repository and how to build the code 29
4.7.4 Dependency of component on other components and stand-alone usage of
component 29

4.8 Verification Model Builder 29
4.8.1 Description of component 29
4.8.2 Status of implementation 29
4.8.3 Location of repository and how to build the code 29
4.8.4 Dependency of component on other components and stand-alone usage of
component 29

4.9 Topology Verifier 29
4.9.1 Description of component 29
4.9.2 Status of implementation 30
4.9.3 Location of repository and how to build the code 30
4.9.4 Dependency of component on other components and stand-alone usage of
component 30

4.10 Provisioning Workflow Verifier 30
4.10.1 Description of component 30
4.10.2 Status of implementation 30
4.10.3 Location of repository and how to build the code 30
4.10.4 Dependency of component on other components and stand-alone usage of
component 30

4.11 Bug Predictor and Fixer 30
4.11.1 Description of component 30
4.11.2 Status of implementation 30
4.11.3 Location of repository and how to build the code 31
4.11.4 Dependency of component on other components and stand-alone usage of
component 31

4.12 Predictive Model Builder 31
4.12.1 Description of component 31
4.12.2 Status of implementation 31
4.12.3 Location of repository and how to build the code 31
4.12.4 Dependency of component on other components and stand-alone usage of
component 31

4.13 1aC Quality Assessor 31
4.13.1 Description of component 31
4.13.2 Status of implementation 31
4.13.3 Location of repository and how to build the code 31
4.13.4 Dependency of component on other components and stand-alone usage of
component 31

4.14 Platform Discovery Service 31
4.14.1 Description of component 31

D6.6 SODALITE framework - second version Page 4

© Copyright Beneficiaries of the SODALITE Project

* Project No 825480. ? Sodalite

4.14.2 Status of implementation 32
4.14.3 Location of repository and how to build the code 32
4.14.4 Dependency of component on other components and stand-alone usage of
component 32
4.15 1aC Model Repository 32
4.15.1 Description of component 32
4.15.2 Status of implementation 32
4.15.3 Location of repository and how to build the code 32
4.15.4 Dependency of component on other components and stand-alone usage of
component 32

5 Runtime Layer Components 33
5.1 Orchestrator - xOpera 33
5.1.1 Description of component 33
5.1.2 Status of implementation 33
5.1.3 Location of repository and how to build the code 33
5.1.4 Dependency of component on other components and stand-alone usage of
component 33

5.2 xOpera REST API 33
5.2.1 Description of component 33
5.2.2 Status of implementation 33
5.2.3 Location of repository and how to build the code 33
5.2.4 Dependency of component on other components and stand-alone usage of
component 33

5.3 Deployment Refactorer 34
5.3.1 Description of component 34
5.3.2 Status of implementation 34
5.3.3 Location of repository and how to build the code 34
5.3.4 Dependency of component on other components and stand-alone usage of
component 34

5.4 Node Manager 34
5.4.1 Description of component 34
5.4.2 Status of implementation 34
5.4.3 Location of repository and how to build the code 35
5.4.4 Dependency of component on other components and stand-alone usage of
component 35

5.5 Refactoring Option Discoverer 35
5.5.1 Description of component 35
5.5.2 Status of implementation 35
5.5.3 Location of repository and how to build the code 35
5.5.4 Dependency of component on other components and stand-alone usage of
component 35

5.6 ALDE 35
5.6.1 Description of component 35

D6.6 SODALITE framework - second version Page 5

© Copyright Beneficiaries of the SODALITE Project

* Project No 825480. ? Sodalite

5.6.2 Status of implementation 35
5.6.3 Location of repository and how to build the code 35
5.6.4 Dependency of component on other components and stand-alone usage of
component 35
5.7 Monitoring - Prometheus/Consul 36
5.7.1 Description of component 36
5.7.2 Status of implementation 36
5.7.3 Location of repository and how to build the code 36
5.7.4 Dependency of component on other components and stand-alone usage of
component 36
5.8 Alert Manager/Rule File Server 36
5.8.1 Description of component 36
5.8.2 Status of implementation 36
5.8.3 Location of repository and how to build the code 36
5.8.4 Dependency of component on other components and stand-alone usage of
component 36
5.9 Node Exporter 37
5.9.1 Description of component 37
5.9.2 Status of implementation 37
5.9.3 Location of repository and how to build the code 37
5.9.4 Dependency of component on other components and stand-alone usage of
component 37
5.10 IPMI Exporter 37
5.10.1 Description of component 37
5.10.2 Status of implementation 37
5.10.3 Location of repository and how to build the code 37
5.10.4 Dependency of component on other components and stand-alone usage of
component 37
5.11 HPC Exporter 37
5.11.1 Description of component 37
5.11.2 Status of implementation 37
5.11.3 Location of repository and how to build the code 38
5.11.4 Dependency of component on other components and stand-alone usage of
component 38
5.12 Skydive 38
5.12.1 Description of component 38
5.12.2 Status of implementation 38
5.12.3 Location of repository and how to build the code 38
5.12.4 Dependency of component on other components and stand-alone usage of
component 38
5.13 Edge Exporter 39
5.13.1 Description of component 39
5.13.2 Status of implementation 39
5.13.3 Location of repository and how to build the code 39
D6.6 SODALITE framework - second version Page 6

© Copyright Beneficiaries of the SODALITE Project

* Project No 825480. ? Sodalite

5.13.4 Dependency of component on other components and stand-alone usage of

component
6 Conclusion
7 References

Appendix A - Reference Component Definition
Appendix A.1 SODALITE Semantic Modelling Layer
A.1.1 SODALITE IDE
A.1.2 Semantic Reasoner
A.1.3 Semantic Knowledge Base
A.1.4 Development plan for Semantic Modelling Layer
Appendix A.2 SODALITE Infrastructure as Code Layer
A.2.1 Abstract Model Parser
A.2.2 1aC Blueprint Builder
A.2.3 Runtime Image Builder
A.2.4 Concrete Image Builder
A.2.5 Application Optimiser
A.2.6 laC Verifier
A.2.7 Verification Model Builder
A.2.8 Topology Verifier
A.2.9 Provisioning Workflow Verifier
A.2.10 Bug Predictor and Fixer
A.2.11 Predictive Model Builder
A.2.12 laC Quality Assessor
A.2.13 laC Model Repository
A.2.14 Image Registry
A.2.15 Platform Discovery Service
A.2.16 Development plan for Infrastructure as Code Management layer
Appendix A.3 SODALITE Runtime Layer
A.3.1 Orchestrator + Drivers
Orchestrator
ALDE
A.3.2 Monitoring
Monitoring system
Alert Manager
Monitoring Dashboard - Grafana
IPMI Exporter
HPC Exporter
Skydive Exporter
A.3.3 Deployment Refactorer
A.3.4 Node Manager
A.3.5 Refactoring Option Discoverer

39

40

41

42
42
42
44
45
46
47
47
48
48
50
50
51
52
52
53
53
54
55
55
56
57
58
60
60
60
61
62
62
63
64
64
65
65
66
67
68

D6.6 SODALITE framework - second version
© Copyright Beneficiaries of the SODALITE Project

Page 7

SN Project No 825480.

‘? Sodalite

A.3.6 xOpera REST API
A.3.7. Kubernetes Edge Components
Controllers / Monitors
Labellers
Device Plugins
Exporters
A.3.7 Development plan for Runtime Layer
Deployment Refactorer
Node Manager
Refactoring Option Discoverer
xOpera REST API
Kubernetes Controller for Edge
Appendix A.4 SODALITE Security Components
A.4.1 IAM Introspection
A.4.2 Secrets Management

68
69
69
70
71
72
73
74
75
75
75
76
76
76
77

D6.6 SODALITE framework - second version
© Copyright Beneficiaries of the SODALITE Project

Page 8

Project No 825480. ? SOda].ite

List Of Images

List Of Tables

D6.6 SODALITE framework - second version Page 9
© Copyright Beneficiaries of the SODALITE Project

Project No 825480. ? Sodalite

D6.6 SODALITE framework - second version Page 10
© Copyright Beneficiaries of the SODALITE Project

* Project No 825480. ? Sodalite

Executive Summary

The SODALITE Framework is the software system that includes all SODALITE stable components.
This deliverable includes the description of the software that makes up the SODALITE stack, while
the actual software is available through the GitHub SODALITE repository
(https://github.com/SODALITE-EU). The document thus serves as an accompanying textual
document, describing the components delivered by the SODALITE consortium at the end of the
second year of the project. This document updates the status reported in D6.5 - SODALITE
Framework - First Version. This comprises what has been achieved for the second SODALITE
prototype embodied in Milestone 6 (MS6) of the project which was defined as: First advanced
features, more integrated prototype running. Use-Cases are clearly improved. Second public
release of the complete stack.

The SODALITE architecture is divided into 3 main layers: Modelling Layer, Infrastructure as Code
Layer and Runtime Layer. This document summarizes the available stable components in each of
these layers, and points to instructions on how these components can be accessed and built.

In addition to the updated status of each of the components, this document adds a section (section
2) outlining the improvements in this release of the SODALITE stack.

This document represents the status at the end of Year 2 of the project and will be updated with a
future release of the framework at the end of Year 3 (D6.7 - SODALITE framework - Final version).

D6.6 SODALITE framework - second version Page 11
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU

* Project No 825480. ? Sodalite

Glossary
Acronym Explanation
AADM Abstract Application Deployment Model
AAI Authentication and Authorisation Infrastructure
ALDE Application Lifecycle Deploy Engine
AM Ansible Model
AOE Application Ops Experts
API Application Program Interface
CSAR Cloud Service Archive
DSL Domain Specific Language
HPC High Performance Computing
laC Infrastructure as Code
IAM Identity and Access Management
IDE Integrated Development Environment
JSON JavaScript Object Notation
KB Knowledge Base
KPI Key Performance Indicator
MODAK Model based Optimiser for Deployment of Application (with Kontainers)
NLP Natural Language Processing
oM Optimisation Model
0SS Open Source Software
RDF Resource Description Framework
REST Representational State Transfer
RM Resource Model
TOSCA Topology and Orchestration Specification for Cloud Applications
uc Use Case

D6.6 SODALITE framework - second version Page 12
© Copyright Beneficiaries of the SODALITE Project

* Project No 825480. /’ Sodalite

1 Introduction

The SODALITE Framework is the software system that includes all SODALITE stable components.
This deliverable presents the status and location of the software that make up the SODALITE
stack, describing the components delivered by the SODALITE consortium at the end of the
second year of the project. This document updates the status reported in D6.5 - SODALITE
Framework - First Version. This is mainly a software deliverable (The deliverable is marked as DEM -
it contains software accompanying information.) and comprises what has been achieved for the
SODALITE prototype embodied in Milestone 6 (MS6) of the project which was defined as: First
advanced features, more integrated prototype running. Use-Cases are clearly improved. Second
public release of the complete stack.

All of the released components of this Second Prototype use a CI/CD pipeline to automatically
build their artifacts. As part of the build process, individual components are packaged in Docker
containers and are stored in the SODALITE DockerHub repository®. A blueprint® was prepared that
allows deployment of the entire stack using the xOpera orchestrator. In addition, instructions are
provided individually for each component on how to compile and use the component.

Instructions on how to contribute to the SODALITE stack are provided in deliverable D2.4,
Guidelines for contributors to the SODALITE framework’.

The SODALITE architecture is divided into 3 main layers: Modelling Layer, Infrastructure as Code
Layer and Runtime Layer. A laboratory prototype of the SODALITE Framework is running on the
SODALITE testbed, and the SODALITE Use-Cases run on the prototype. This document summarizes
the available stable components in each of the layers, and points to instructions on how they can
be accessed and built.

Video demonstrations of many of these components are presented on the Project’s YouTube
channel”.

Throughout the document, we are using the terms Application Ops Experts (AOE), Resource
Experts (RE) and Quality Experts (QE). The following table provides a mapping between these roles
and the processes defined in the ISO/IEC/IEEE standard 12207 Systems and software engineering —
Software life cycle processes:

SODALITE Roles ISO/IEC/IEEE standard 12207 processes

Application Ops Experts (AOE) |Operation processes and maintenance processes

Infrastructure management and Configuration management

Resource Experts (RE)
processes

Quality Experts (QE) Quality Management and Quality assurance processes

In addition to the updated status of each of the components reported in D6.5, this document
adds a section (section 2) outlining the improvements in this release of the SODALITE stack.

D6.6 SODALITE framework - second version Page 13
© Copyright Beneficiaries of the SODALITE Project

* Project No 825480. /’ Sodalite

This document represents the status at the end of Year 2 of the project and will be updated with a
future release of the framework at the end of Year 3 (D6.7 - SODALITE framework - Final version).

1.1 Structure of the Document

The next subsections (1.2 and 1.3) reproduce (mainly from D2.1° - Requirements, KPIs, evaluation
plan and architecture - First version and D2.2 - Requirements, KPIs, evaluation plan and architecture -
Intermediate version) an overview of the SODALITE Context and Goals followed by the SODALITE
architecture and components that make up the SODALITE Framework. This is followed by section
2, which outlines the improvements that were added to this second prototype release. The
following sections of the document (sections 3, 4, 5) list the components (grouped according to the
architecture structure) that make up the SODALITE Platform. For each component, we provide a
short description, status, and pointers to source code repository and instructions on how to build
the code. These status reports update the previous version of this deliverable, D6.5 (SODALITE
Framework - First Version). In addition, the component information is presented in compact,
tabular form in an appendix.

1.2 SODALITE Context and Goals

The SODALITE vision is to support Digital Transformation of European Industry through (1)
increasing design and runtime effectiveness of software-defined infrastructures, to ensure
high-performance execution over dynamic heterogeneous execution environments; (2) increasing
simplicity of modelling applications and infrastructures, to improve manageability, collaboration,
and time to market.

Within this vision, SODALITE provides application developers and infrastructure operators with tools
that (a) abstract their application and infrastructure requirements to (b) enable simpler and faster
development, deployment, operation, and execution of heterogeneous applications reflecting diverse
circumstances over (c) heterogeneous, software-defined, high-performance, cloud infrastructures,
with a particular focus on performance, quality, manageability, and reliability.

In particular, SODALITE is focusing on supporting the entire life cycle of the so-called Infrastructure
as Code (laC). 1aC means limiting the need to manually provision resources, configuring them and
deploying an application by offering to DevOps teams the possibility to code such tasks into proper
scripts that are then executed by proper orchestrators, thus introducing significant automation in
the application life cycle.

The following innovations are offered:

1. Application Deployment Modeling and Infrastructure as Code Modeling - Build deployment
patterns based on preexisting models, including rule-based models, semantic models, and
data-driven (machine learning and deep learning).

2. Ease of Deployment, Orchestration, and Provisioning.

3. Verification and Bug Prediction - Support for a subset of smells, anti-patterns, and bugs in
laC scripts (TOSCA and Ansible).

4. Monitoring and Reconfiguration - Monitoring of metrics relevant for Cloud, HPC, and Edge
computing environments and applications; Basic event-driven deployment refactoring
decision making; Support for detecting and fixing performance anti-patterns.

5. Performance Optimisation - Static application optimisation for Cloud, HPC and Edge;
Support for modelling performance.

D6.6 SODALITE framework - second version Page 14
© Copyright Beneficiaries of the SODALITE Project

* Project No 825480. ? Sodalite

1.3 Overview of SODALITE architecture

We reproduce here the figures and overview of the SODALITE architecture for simple reference.
Additional details of the figures can be found in the Architecture sections of D2.1 (Requirements,
KPIs, evaluation plan and architecture - First version) and D2.2 (Requirements, KPIs, evaluation plan
and architecture - Intermediate version).

The SODALITE platform is divided into three main layers. These layers are the Modelling Layer, the
Infrastructure as Code Layer, and the Runtime Layer. Figure 1 shows these layers together with
their relationships defined in terms of interfaces. The Modelling Layer exploits the interfaces
offered by the other two layers to offer to the end users (Application Ops Experts, Resource Experts
and Quality Experts) the needed information concerning the application deployment configuration
and the corresponding runtime. In turn, it offers to the other layers the possibility to access the
ontology and the application deployment model through the SemanticReasoningAPl. The
Infrastructure as Code Layer offers to the Modelling Layer the APIs for preparing the deployment,
for verifying the 1aC and for predicting defects. Finally, the Runtime Layer offers APIs for controlling
the orchestration of an application deployment and for monitoring the status of the system. In
turn, this layer relies on the interfaces offered by the underlying technologies with particular
reference to the ones shown in the figure.

SODALITE General Architecture

SODALITE
Modeling Layer [~ ———

e ~ T T— TT—

— —
= ~ T -
Q Q’ ‘o Q
ImageBuilderAPI PlatformiDiscoveryAPI

MonitoringAP| Orcnestral\orAﬂ SecretVaulAR laC¥erifactionAPI /gﬁjeaPreuicuon
. _— orrectionAP|

loyment
PreparationAPI

o

‘SODALITE
Runtime Layer

I AN b
N
T l FR—— | SODALITE
orque penstac Infrastructure as Code Layer

Figure 1 - SODALITE Overall Architecture.

1.3.1 Modelling Layer
Figure 2 shows the internal architecture of the SODALITE Modelling Layer.

The SODALITE IDE provides complete support for the authoring lifecycle of abstract application
deployment models. The Semantic Knowledge Base (KB) is SODALITE’s semantic repository that
hosts the models (ontologies). The Semantic Reasoner is a middleware facilitating the interaction
with the KB. In particular, it provides an API to support the insertion and retrieval of knowledge
to/from the KB, and the application of rule-based semantic reasoning over the data stored in the
KB. It mainly interacts with IDE, but also with various components of the laC layer such as Platform
Discovery Service, and Bug Predictor. During the second year, a part of the architecture was
redesigned, depicted in Figure 2, and more details are reported in D2.2 (Requirements, KPIs,
evaluation plan and architecture - Intermediate version).

D6.6 SODALITE framework - second version Page 15
© Copyright Beneficiaries of the SODALITE Project

* Project No 825480. ? Sodalite

WP3 Madeling Layer Architecture Qverview

DSL Editor consists of four editors

AADM: Abstract Application Deployment Model
RM: Resource Model

OM: Optimization Model

Ansible: Ansible Abstract Playbook Model

|
SODALITE IDE) |

|

[DSL Editor
- q
/ TAADMDSL| | \
-~ lse [usel “use | ‘
Semantic Reasoner g | \ e
: % -
Semantic Reasoning Engine e Tansible DSLl use IOM DSL | /.,'
B s .)
se __oam-CE ! o, Q Q [RM DSL
SemanticReasonerAPl DeploymentPreparationAPl OrchestratorAPl laCVerificationAPl
- ¥ - /J
use use
Semantic Knowledge Basel,
et ‘ % /
RDF Triplestore -, . N : - ¥ , >3
(GraphDB) . 2 . §
‘ A
. X /
: ! ; 1 o e| 8 /
d ' use :Semanﬂc Population Engine | || Taul
SPARQL Endpeint v g ! i
| - : s

|) use™s use N __-----"" " lse " use lse luse

S .use
F e T T | _—— u \""-\) = ’ i v “Ey
Domain Ontologies L [@ L] é L
PlatformDiscoveryAPl DefectPredictionCorrectionAPl IAMIntrospectionAP! MonitoringRuleAPl SecretVaultAPl MonitoringAPI
|
|

|Semantic Modelling & Abstraction

Application Ontology
Infrastructure Ontology

Performance Optimization Ontelogy
Deployment & Lifecycle Ontology

Figure 2 - Modelling Layer Architecture.

SODALITE IDE goes beyond existing approaches, by extending the modeling support to both Cloud
and HPC domains, and by incorporating specific modeling assistance for the optimisation of
application deployments.

Beyond providing a simplified DSL for Resource Model authoring, SODALITE releases the Resource
Experts and Application Ops Experts from the complexity of the AADM and TOSCA YAML
specification.

Additional details can be found in deliverable D2.2 and D3.1°.

1.3.2 Infrastructure as Code (1aC) Layer

Preparing a valid and deployable TOSCA blueprint is one of the main tasks of IaC Layer. During the
second year of the project several components were initially released, others refactored.

In this period Application Optimiser component exposing a dockerized REST APl (MODAK) was
initially released and integrated into the pipeline enabling the SODALITE users to statically
optimise the application for a given target execution platform. Automation of application
optimisation on both HPC and cloud systems requiring models that can be used for performance
prediction has been improved. SODALITE prepares and uses these models for both
pre-deployment (static) performance optimisation and runtime (dynamic) performance
optimisation.

Platform Discovery Service was introduced in the architecture, exposing a REST API that helps to
automate the tasks of the Resource Expert by creating a valid TOSCA platform resource model to

D6.6 SODALITE framework - second version Page 16
© Copyright Beneficiaries of the SODALITE Project

* Project No 825480. ? Sodalite

be stored into the SODALITE’s Knowledge Base and used during the design of the application
deployment model (AADM).

During development in the second year of the project a part of the architecture was redesigned
which was also reported in deliverable D2.2 (Requirements, KPIs, evaluation plan and architecture -
Intermediate version) and D4.2 (laC Management - Intermediate version), shown here in Figure 3.

WP4 - Infrastructure As Code Layer
Architecture Overview

Image Builder\
[=]

Concrete
Image
Builder

use

[=]

[=] I:Il Runtime
Ansible Support H SODALITE IDE | Q Image
Runtime Builder Image
ImageAPI data access

atform
Discovery

Defect Prediction Deployment
1aC Verification) and Correction Preparation

a
Provisioning
Workflow
Verifier DefectPrediction Platform
CorrectionAPI DiscoveryAP|
[=] [=]
Bug Predictor =S Alsiach Platform
Blueprint Model A
and Fixer A Discovery
builder Parser

Verification
Model
Builder Builder

use |use
erformance
Optimisation
= |
Predictive \ =

a
Model laC Quality O———| Application

Verifier Assessor

Topology

Application Sty

OptimiserAPI

D)Z
—Q)

SemanticReasonerAP|

Figure 3 - Updated Infrastructure as Code Layer Architecture.

SODALITE’s deployment preparation uses target platform optimised containers for execution on
heterogeneous environments ranging from edge devices to private/ public clouds and HPC
clusters.

An important step for producing a bug and code-smell free IaC builds on using a bug and smell 1aC
taxonomy for cloud and HPC applications based on a systematic literature review and a qualitative
analysis of bug fix commit messages. SODALITE uses semantic technologies for verifying structural
constraints and semantics of aC, and also support for explaining errors and their causes,
recommending the resolutions, (semi) automating the correction of erroneous laC code through
model-to-model transformations.

For additional details please refer to deliverable D4.2 (laC Management - Intermediate version.)

1.3.3 Runtime Layer

The Runtime Layer of SODALITE, shown in Figure 4, orchestrates the deployment of an application,
monitors its execution and proposes changes to the application's runtime. It is composed of three
main blocks: Orchestrator, Monitoring and Refactoring. The Orchestrator manages the lifecycle of

D6.6 SODALITE framework - second version Page 17
© Copyright Beneficiaries of the SODALITE Project

* Project No 825480. ? Sodalite

an application deployed in heterogeneous infrastructures. The Monitoring component gathers
metrics from the heterogeneous infrastructures. These metrics are used to determine to what
extent the application is running as expected. The Deployment Refactorer refactors the
deployment model of an application in response to violations in the application goals.

WP5 - Runtime Layer Architecture Overview

Refactoring\
=]
____—————1 Deployment Refactorer Q,
ol - 7 - RefactoﬁﬂgAP\
T e i ™, \\
L 7 / \ I\
P a / [N |
X SODALITE 7 A T |
. 9 9 ,O IDE /- /|
SecrelVauTmE\ 1AM ‘\ \mag/s Dgyl’cymem : ManagementAPI DiscoveringAPI /s’ |
\ntrospechonAF’\ RegjstryAPI ’BreparationAF'l v I [4 7 U
N 5 / A i | / ‘ “‘-\ ,// /
\ / S use luse / I /
/ P | / o \ /
~ X / / / - \
Orchestrator) b / / 3 m / | e L (’::I
SR - =
[=] / (=] a Refactoring
Orchestrator Q Dashboard Alert Manager Node Manager Option
——— OrchestratorAPI Discoverer
A N R N (y
= y / \ N \ ~
—~"use _“use [use \use “use I % | 2
- / ¥ o Y
5 P ¢ \ g S
[=]4 a [=] a (=] e N L
AWS Openstack Torque K8s OpenFaas 67 Q g o
Drw'er EIARCE DI SIS Se] Monito| mgAP\ xﬁamerAH Alerting AP SemanticReasonerAPI|
> 4 |
\ e |
P |
=] =]
use use use use use Monitoring Exporter

& ‘4 i = . 1 FLid
[AWS U ‘ OpenStack D | Torque H ‘ Kubernetes D [OpenFaasS D

Figure 4 - Runtime Layer Architecture.

The SODALITE Orchestrator differs from other approaches that follow an intrusive architecture that
require modifications to the infrastructure configuration. Our approach is to orchestrate resources
via the existing resource managers and execution platforms.

Monitoring supports the dynamic setup of standard and specialized exporters for Cloud
infrastructures, as well as for HPC and Edge. Real-time dynamic alerting rules and notifications to
subscribers are supported as well. Standard and specialized reports for end-users are accessible
through the Monitoring dashboard.

We have a novel approach for the deployment optimisation problem by combining rule-based,
machine-learning based, and control-theory based techniques. We adopt the dynamic software
product lines view, finding the optimal deployment variant between a set of allowed variants. To
this end, we develop machine-learning based predictors that accurately predict performance of
the whole population of the deployment variants based on a small sample of measured
deployment variants. This allowed set of deployment variants is evolved at runtime by discovering
and integrating new resources, nodes, and components. Moreover, we develop control-theory
based planners to support fast vertical elasticity for containerized applications. We also aim to
detect performance anti-patterns, being able to correct them in application deployments at
runtime.

Additional details can be found in deliverable D5.2 (Application deployment and dynamic runtime -
intermediate version).

D6.6 SODALITE framework - second version Page 18
© Copyright Beneficiaries of the SODALITE Project

SN Project No 825480. /’ Sodalite

2 Improved Integrated Prototype - Milestone 6

This section describes the development status of the MS6 - Second Prototype and its constituent
components and modules. The table below highlights the overall view on the development,
deployment and integration statuses of the SODALITE components done up to Y2 of the project. To
elaborate more on the meaning of the statuses, their explanation is provided below:

e Development status refers to whether the source code is released and respective
functionally is provided. For Identity and Access Management components, the
development status is N/A, since the components were reused as is.

e Deployment status refers to whether the component is deployed via l1aC on a particular
infrastructure, e.g. Cloud testbed.

e Integration status refers to whether the component is integrated into the platform.
Integration is partial, if it is integrated with some components, either within a layer or
across the layers.

During the past year, the development of all the components have progressed and new or
advanced features have been implemented. New components have been added to further enhance
the SODALITE platform, such as MODAK (Application Optimiser) and Platform Discovery Service.
Furthermore, new Identity and Access Management (IAM) components were introduced into the
overall SODALITE architecture. The integration of tools for Software Quality measurement helped
to continuously estimate the quality of the developments.

The integration work was significantly improved thanks to the improved CI/CD, agreed conversion
for release management and an introduction of SODALITE laC Platform Stack’. New components
are partially integrated, such as MODAK, Platform Discovery and IAM.

Semantic Modelling Layer

Component Development Deployment Integration
SODALITE IDE
Semantic Reasoner
Semantic KB

laC Management Layer

Component Development Deployment Integration
Abstract Model Parser
laC Blueprint Builder
Runtime Image Builder
Concrete Image Builder
Application Optimiser - MODAK
laC Verifier
Verification Model Builder
Topology Verifier
Provisioning Workflow Verifier
Bug Predictor and Fixer
Predictive Model Builder
laC Quality Assessor
laC Model Repository
Image Registry
Platform Discovery Service

Runtime Layer

D6.6 SODALITE framework - second version Page 19
© Copyright Beneficiaries of the SODALITE Project

* Project No 825480. ’ Sodalite

Component Development Deployment Integration
Orchestrator + Drivers
xOpera REST API
Monitoring
Deployment Refactorer
Node Manager
Refactoring Option Discoverer
Kubernetes Edge Components

Identity and Access Management Components

Component Development Deployment Integration
IAM Introspection N/A
Secrets Management N/A

Table legend Completed Partial -

Table 1 - Development status of the Second Prototype

Later sections provide details of the development status of the components of each layer of the
Second Prototype. Additional information is presented in an appendix in tabular form including
pointers to the source code and downloadable artifacts, dependencies and steps towards the next
prototype.

2.1 Integrated Prototype Improved Features

The following improvements are included in the updated SODALITE platform.
e Modelling Layer

o Support of TOSCA Policies in the Modelling Layer.

o Improved context assistance in model authoring.

o Improved scalability in the semantic services.

e laC layer

o Automated discovery and TOSCA description of infrastructure.

o Support for the creation of Ansible scripts integrated with the Resource Models.

o Static optimisation of applications before deployment (MODAK).

o Semantic and Analysis Support including: Bug Taxonomy; Unified best and bad
practices Catalog; Unified Smell Catalog; Linguistic Anti-pattern detection via NLP
and Deep Learning.

o Orchestration: Improvements to xOpera including Reconfiguration; Parallel
execution of deployment; Resume command; Worklows; REST API.

e Runtime Layer
o Dynamic Monitoring.
o Refactoring.

Details of these features can be found in deliverable D4.2 (laC Management - Intermediate version)
and deliverable D5.2 (Application deployment and dynamic runtime - intermediate version).

D6.6 SODALITE framework - second version Page 20
© Copyright Beneficiaries of the SODALITE Project

* Project No 825480. ? Sodalite

2.2 SODALITE Security Support

SODALITE provides tools and methods to authenticate and authorize actions on SODALITE’s API
endpoints using open-source tools. Authorization is required, since SODALITE endpoints can
manage different infrastructures belonging to different domains. Authentication and authorization
is implemented using IAM (ldentity and Access Management) authentication endpoint and
introspection APl endpoints. Apart from proper authorization of users actions, safe secret
management across the whole deployment pipeline is also required and ensured by SODALITE
using Secret Vault endpoint which is also integrated into the SODALITE integrated prototype and
used in the deployment workflows.

2.2.1 1AM Authentication and Introspection

As a basis for authorization the OAuth 2.0 protocol was chosen, which is a de-facto industry
standard for authorization. As for IAM provider, SODALITE uses Keycloak® - a popular open source
tool which simplifies the creation of secure services with minimal coding for authentication and
authorization. Keycloak covers all the security IAM workflows needed by SODALITE.

2.2.2 Secrets Management

Apart from properly authorizing users actions, other concerns are also addressed - properly
handling infrastructure secrets, like RSA keys, tokens, passwords. For that purpose Hashicorp
Vault® was chosen, which is one of the most widely used open source tools for secret management.
This approach allows SODALITE operators to integrate it with their own Vault installations that are
not part of the SODALITE stack.

2.3 Deploying the Integrated Prototype

SODALITE approaches the deployment of the framework prototype by using a TOSCA blueprint and
xOpera orchestrator. The deployment is further simplified by running a script, which installs a local
copy of the xOpera orchestrator and all the needed packages, and configures the deployment of
the SODALITE stack to different targets (local Ubuntu machine, OpenStack VM instance). The script
finally executes the deployment of the TOSCA blueprint, which describes the SODALITE model and
deploys the SODALITE dockerized components from the public DockerHub repositories, using
xOpera orchestrator.

2.3.1 Deploying the Sodalite Stack via Common blueprint

SODALITE deployment blueprints with all information needed to deploy SODALITE stack are
defined in the GitHub repository https://github.com/SODALITE-EU/iac-platform-stack, offering

extensive descriptions on how to configure all the components.

2.3.2 Deploying the IDE
The SODALITE IDE component should be installed separately from the SODALITE IDE GitHub

repository https://github.com/SODALITE-EU/ide, offering extensive information on how to install
and configure the SODALITE IDE.

2.4 Running the Integrated Prototype

After the installation of the SODALITE backend components via the TOSCA blueprint deployment
and the installation and configuration of the SODALITE IDE the user is able to start using the
SODALITE stack. A simple example model used for test runs can be found in the SODALITE IDE
rep05|tory under:

D6.6 SODALITE framework - second version Page 21
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/iac-platform-stack
https://github.com/SODALITE-EU/ide
https://github.com/SODALITE-EU/ide/tree/master/dsl/org.sodalite.dsl.examples/sodalite-test

* Project No 825480. ? Sodalite

while other, somewhat more complex examples can be found in this part of the SODALITE IDE
repository:

NOTE: Some of the examples need specific Openstack/HPC (Torque/Slurm) infrastructure access.

2.5 Supported Infrastructures

Currently, SODALITE supports application deployment on heterogeneous platform infrastructures
such as HPC clusters managed by Torque and Slurm resource managers, Openstack private/public
cloud, public AWS EC2, and Kubernetes on Edge through Helm chart deployments.

2.6 Common development/testing tools/methods used in the project

The project uses the GitHub platform for code management (https://github.com/SODALITE-EU), to

facilitate collaboration between the developers of the different components and also to leverage
GitHub’s excellent Pull Request mechanism, to allow for code reviewing and automatic testing by
Jenkins.

The Jenkins (https://www.jenkins.io/) platform was chosen to conduct the CI/CD operations for
the project’s components. Jenkins provides all the functionality we need to perform CI/CD, is
considered one of the most popular CI/CD platforms today, and is also available as OSS.

DockerHub (https://hub.docker.com/) was chosen to store the different Docker images produced
by Jenkins for the different project components, as the images themselves were deemed to be safe
to be deployed to a public registry and DockerHub is one of the most popular Docker registries
nowadays.

In order to test the quality of the code and to make sure that the Docker images produced were of a
high quality, it was decided to use the SonarCloud (https://sonarcloud.io/) platform for static code
analysis and code coverage testing.

Additional details can be found in D6.3 (Intermediate Implementation and Evaluation of the
SODALITE Platform and Use Cases).

2.7 How can an external user exploit Sodalite?

2.7.1 Tutorial for using the SODALITE platform

A tutorial® that explains how AOEs can create AADMs is available. This tutorial has been used as
documentation for the participants in a SODALITE workshop. In new releases, this tutorial will be
extended to cover other IDE features, including AADM deployment or RM authoring.

Video demonstrations of many of these components are presented on the Project’s YouTube

channel (https://www.youtube.com/channel/UCrArVp55Gals78jFt1lUfFg).

D6.6 SODALITE framework - second version Page 22
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/ide/tree/master/dsl/org.sodalite.dsl.examples
https://github.com/SODALITE-EU
https://www.jenkins.io/
https://hub.docker.com/
https://sonarcloud.io/
https://www.youtube.com/channel/UCrArVp55GaJs78jFt1lUfFg

* Project No 825480. ’ Sodalite

3 Modelling Layer

This section lists the components of the Modelling Layer, describing each component’s function,
implementation status, and code repository. This section updates the component status reported
in D6.5 (SODALITE Framework - First Version). A concise list of improvements of the current release
over the previous release appears in section 2.1.

3.1 Semantic Knowledge Base

3.1.1 Description of component

The Semantic Knowledge Base (KB) is the semantic database management system of SODALITE
that enables storing, querying and managing structured data. It follows the semantic data schema
paradigm, called ontology, which is stored and managed independently from the data (see D3.1,
First version of ontologies and semantic repository, for more details).

3.1.2 Status of implementation

KB uses an existing RDF triple store (GraphDB") to persist and index the ontologies developed
regarding the modelling of applications and resources. The configuration of the KB has been tuned
so as to achieve better performance. The current version of the ontologies include modules that
provide:

e The formal schema, i.e. classes and properties that can be used to capture application and
resource models (TOSCA™ ontology). This schema has been further enriched for supporting
TOSCA Policies, other infrastructure types such as interface types and the association of
optimisation DSL with a node template.

e The ontology pattern that should be followed (SODALITE meta-model) in order to define
modular and reusable knowledge graphs. Additionally, it contains metadata for the
models, needed from the IDE for rendering the view of the models, such as the name of
the file, user’s information etc.

3.1.3 Location of repository and how to build the code

This component is in the following GitHub repository. The README file of the repository includes
the build instructions.

https://github.com/SODALITE-EU/semantic-models

3.1.4 Dependency of component on other components and stand-alone usage of component

The Semantic Knowledge Base is just a database, so it is not dependent on other SODALITE
components in order to run. It is dependent on other components in order to populate the
database.

3.2 Semantic Reasoner

3.2.1 Description of component

The population of the KB, i.e. the instantiation of the respective ontology patterns to capture
resources and applications (AADM), is performed by the Semantic Reasoner, which encapsulates
the necessary logic to translate the DSL composed in the IDE by the users to the conceptual model
of SODALITE. In addition, the Semantic Reasoner provides a collection of interfaces to retrieve data
from the KB for getting information regarding resource and application models, as well as to
expose reasoning functionality developed in the laC layer with respect to searching and validation
services (see D3.1, First version of ontologies and semantic repository, for more details).

D6.6 SODALITE framework - second version Page 23
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/semantic-models

* Project No 825480. /’ Sodalite

3.2.2 Status of implementation
A number of REST API endpoints have been developed for exposing functionality to external
components. Semantic Reasoner mostly interacts with IDE in order to assist users in defining
models. Concretely , the component provides:

e The population of the KB with application instances and infrastructure resources.

e Context-assistance services in AADM, RM and optimisation DSL authoring.

e Validation cases for the models.

The access in KB is restricted in APIs by requiring user authentication and authorization.

It should be noted that this REST API exposes additional functionality that has been mainly
developed in T4.4 (Analytics and Semantic Decision Support) relevant to searching and validation.
More details on the backend implementation of the REST API are provided in D4.1 (laC
Management - initial version).

3.2.3 Location of repository and how to build the code
This component is in the following GitHub repository. The README file of the repository includes
the build instructions.

https://github.com/SODALITE-EU/semantic-reasoner

3.2.4 Dependency of component on other components and stand-alone usage of component

Semantic Reasoner is dependent on the Knowledge Base, and on the Bug Predictor and Fixer for
detecting bugs and smells in laC. Its stand-alone usage is described in the README file of the
GitHub repository.

3.3 SODALITE IDE

3.3.1 Description of component

The SODALITE IDE is the visual programming interface between the end users, namely the
Application Ops Experts (AOEs) and the Resource Experts (REs), and the SODALITE Infrastructure as
Code (laC) Layer. The IDE also supports Quality Experts to optimise existing models. The IDE
enables:

e Application Ops Experts to:
o Define an Abstract Application Deployment Model (AADM),
o Select suitable infrastructure/platform resources from the KB that
satisfy the requirements of the AADM nodes,
o Store the AADM into the KB,
Triggers the deployment of the AADM within the IAC layer and monitor its
deployment status,
o Browse their AADM stored in the KB, retrieve them into their local IDE workspaces
for edition and update, or remove selected ones,
Verify the syntactic and semantic correctness of their models,
Being assisted by the KB suggestions to complete and improve their models,
Visualize graphically their application deployment topologies out of the AADM,
Define implementations, as Ansible Models (AMs), for the operations of the
interfaces adopted by deployed components.
® Resource Experts to:
o Modelinfrastructure/platform resources to be stored into the KB,
o Map resources and optimisations,
o Browse their RMs stored in the KB, retrieve them into their local IDE workspaces for
edition and update, or remove selected ones,

O O O O

D6.6 SODALITE framework - second version Page 24
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/semantic-reasoner

* Project No 825480. /’ Sodalite

o Verify the syntactic and semantic correctness of their models,

o Being assisted by the KB suggestions to complete and improve their models,

o Store the RMinto the KB

e Quality Experts to:

o Define Optimisation Models (OMs) for target application components. These
models will be used by MODAK to improve the components performance at
deployment time.

o Being assisted by the KB suggestions to complete and improve their models,
Associate the OMs to application components declared by AOEs in AADMs,

3.3.2 Status of implementation
The development status of the IDE is as follows:

DSL specifications: new versions provide full DSL grammars for AADM, RM, OMs and AMs. AADM
and RM are improved, more complete versions of the TOSCA specification for instances (i.e.
templates) and types definitions. They include the required modelling elements to fully specify
AADMs, RMs, OMs, and AMs for all the use cases.

DSL editors: current version implements the following features:

e Modelling support for designing AADMs: current version supports the modelling of
application components and policies, the support of inputs and modules.

e Modelling support for designing RMs: current version supports the modelling of types
(data, artifact, capability, interface, relationship, node, policy).

e Modelling support for designing OMs: current version supports the full modeling of the
Optimisation DSL designed by SODALITE. See D3.1 (laC Management - Intermediate
version).

e Modelling support for designing AMs: current version supports the full modeling of the
Ansible DSL designed by SODALITE. See D4.2 (laC Management - Intermediate version).

e Textual modeling of AADMs, RMs, OMs, AMs, with context-aware content assistance, syntax
highlighting, outlines, syntactic and semantic validation (not yet supported for AMs).

e Automatic graphical representation of AADMs.

e Complete model governance of AADMs and RMs using the KB as shared repository:
browsing of models, retrieval, storage and deletion.

e Deployment of AADMs using the laC layer.

e Integration with SODALITE IAM Authentication API for secure communications between the
IDE and the SODALITE backend components, including the KB

3.3.3 Location of repository and how to build the code
This component is in the following GitHub repository: https://github.com/SODALITE-EU/ide.

The README file of the repository includes instructions to build and install this IDE within an
Eclipse instance.

3.3.4 Dependency of component on other components and stand-alone usage of component
The IDE requires the following SODALITE components to properly work:

e The SODALITE Modelling Layer (Knowledge Base)

o The SODALITE laC layer

e The SODALITE Runtime Layer (Orchestrator)

o The SODALITE Security Support
The SODALITE IDE, based on Eclipse, is a standalone component that requires a local installation,
and further configuration to be bound to a target SODALITE backend.

D6.6 SODALITE framework - second version Page 25
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/ide

* Project No 825480. " Sodalite

4 |laC Management Components

This section lists the components of the 1aC Management layer, describing each component’s
function, implementation status, and code repository. This section updates the component status
reported in D6.5 (SODALITE Framework - First Version). A concise list of improvements of the current
release over the previous release appears in section 2.1. Additional details on the various features
can be found in D4.2 (laC Management - Intermediate version).

4.1 Abstract Model Parser

4.1.1 Description of component

This is a subcomponent of the laC Blueprint Builder. It parses the JSON representation of the
abstract application deployment model (AADM) retrieved from the Semantic Reasoner and
prepares an internal representation of topology tree based on the model retrieved. See D2.2
(Requirements, KPIs, evaluation plan and architecture - Intermediate version) and D4.2 (laC
Management - Intermediate version) for more information.

4.1.2 Status of implementation

This component has been refactored, improved to cover newly introduced SODALITE features such
as using application optimisation model and integrated into the SODALITE’s deployment pipeline.
4.1.3 Location of repository and how to build the code

The component build process, Docker image definitions and source code has been implemented
inside the following GitHub repository: https://github.com/SODALITE-EU/iac-blueprint-builder.
4.1.4 Dependency of component on other components and stand-alone usage of component

This component depends on the inputs of Semantic Reasoner APl and prepares the internal tree
model consumed by laC Blueprint Builder.

4.2 laC Blueprint Builder

4.2.1 Description of component

This component generates a TOSCA/Ansible™ blueprint based on the inner abstract tree model
provided by the Abstract Model Parser. It has been improved to produce a CSAR containing a valid
TOSCA blueprint using execution scripts and artifacts defined in the AADM. After generating the
TOSCA blueprint it calls the Orchestrator REST API endpoint to register the blueprint, thus making
it ready for deployment.

See D2.2 (Requirements, KPIs, evaluation plan and architecture - Intermediate version) and D4.2 (laC
Management - Intermediate version) for more information.
4.2.2 Status of implementation

The laC Blueprint Builder component has been refactored. Moreover, it has been improved to
implement calls to Application Optimiser REST APl (MODAK). This way, it is possible to associate
HPC TOSCA node templates with optimised image definitions and with job scripts specific to the
target execution platform.

4.2.3 Location of repository and how to build the code

The upgraded version of the component is implemented and described inside the following GitHub

repository: https://github.com/SODALITE-EU/iac-blueprint-builder.

D6.6 SODALITE framework - second version Page 26
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/iac-blueprint-builder
https://github.com/SODALITE-EU/iac-blueprint-builder

* Project No 825480. " Sodalite

4.2.4 Dependency of component on other components and stand-alone usage of component
This component depends on the abstract tree model provided by the Abstract Model Parser

component and Orchestrator REST API (xopera-rest-api) for registering the created TOSCA CSAR
containing the application deployment blueprint.

4.3 Runtime Image Builder

4.3.1 Description of component

This component encapsulates the process of building a SODALITE runtime image based on the
input API call data provided by the user (Application Ops Expert) - sample inputs defining sources
(e.g. source Dockerfile) and targets (e.g. target image name and tags) can be found under GitHub
repository:

1b.com/SODA -EU/image-builder/tree/master/R AP ON-build-params.
After running the image-builder workflow, the created image is pushed to the Image Registry to be
later pulled and deployed by the Orchestrator at deployment time.

See D2.2 (Requirements, KPIs, evaluation plan and architecture - Intermediate version) and D4.2 (laC
Management - Intermediate version) for more information.
4.3.2 Status of implementation

The improved version of the component that comprises the 1aC TOSCA/Ansible definitions of
sources and targets and a REST APl endpoint for invoking the Image Builder has been
implemented. Additionally a CLI Docker image has been provided for user convenience.

4.3.3 Location of repository and how to build the code

The improved version of the component is implemented and described inside this GitHub
repository: https://github.com/SODALITE-EU/image-builder.
4.3.4 Dependency of component on other components and stand-alone usage of component

This component depends on the inputs of the AOE from the IDE component to support the process
of building a specific image. The Image Builder can be used as a standalone component using CLI
Docker image implementation or as a REST API.

4.4 Concrete Image Builder

4.4.1 Description of component

This is a subcomponent that generates a specific implementation of a runtime image (Docker - for
instance). The built image is then pushed to the Docker Image Registry to be later pulled and
deployed by the Orchestrator at deploy time. The creation of the concrete image depends on the
input API call data provided by the user (Application Ops Expert). Sample inputs defining sources
and targets can be found under GitHub repository:

nttps://github.com/SODA - mage-puilde

See D2.2 (Requirements, KPIs, evaluation plan and architecture - Intermediate version) and D4.2 (laC
Management - Intermediate version) for more information.

4.4.2 Status of implementation

The intermediate version of the component that comprises the 1aC TOSCA/Ansible definitions of
sources and targets and a REST API endpoint for invoking the Image Builder was implemented for
building Docker images and pushing them to the SODALITE Image Registry.

D6.6 SODALITE framework - second version Page 27
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/image-builder/tree/master/REST_API/JSON-build-params
https://github.com/SODALITE-EU/image-builder
https://github.com/SODALITE-EU/image-builder/tree/master/REST_API/JSON-build-params

* Project No 825480. /’ Sodalite

4.4.3 Location of repository and how to build the code

The initial version of the component is implemented inside this GitHub repository:

4.4.4 Dependency of component on other components and stand-alone usage of component

This component depends on the internal image creation model created by the Runtime Image
Builder and Image Registry API for pushing specific container image types. This is a sub
component, so it cannot be run without Runtime Image Builder.

4.5 Image Registry

4.5.1 Description of component

This component implements a private SODALITE Image Registry. The images built within SODALITE
are stored in this private Image Registry and later pulled and deployed by the Orchestrator at
deployment time.

See D2.2 (Requirements, KPIs, evaluation plan and architecture - Intermediate version) and D4.2 (laC
Management - Intermediate version) for more information.
4.5.2 Status of implementation

The intermediate version of the private Docker registry has been built, configured and secured with
TLS using laC TOSCA/Ansible blueprint, which was deployed using SODALITE’s Orchestrator
xOpera.

4.5.3 Location of repository and how to build the code
The intermediate version of the component is implemented as laC inside this GitHub repository:

https://github.com/SODALITE-EU/iac-platform-stack. This repository also comprises examples and
deployment blueprints for SODALITE use cases deployed through SODALITE platform.

4.5.4 Dependency of component on other components and stand-alone usage of component
The Image Registry can be and is used as a standalone component.

4.6 Application Optimiser

4.6.1 Description of component

This component, named MODAK, tries to build a performance optimised runtime given the target
platform and configuration and predefined optimisation options.

See D2.2 (Requirements, KPIs, evaluation plan and architecture - Intermediate version), D3.3
(Prototype of application and infrastructure performance models - First version) and D4.2 (laC
Management - Intermediate version) for more information.

4.6.2 Status of implementation

The initial version of performance model training is released for building a performance model.
The MODAK code is available in the public repository. Currently, MODAK supports TensorFlow™,
PyTorch®, MXnet'®, mpich'’, and openmpi'® containers for x86 and NVIDIA GPUs.

See D4.2 (laC Management - Intermediate version) and D6.3 (Intermediate Implementation and
Evaluation of the SODALITE Platform and Use Cases) for more information.

4.6.3 Location of repository and how to build the code

The initial version of the component is implemented and described inside this GitHub repository:
I -//githut SODALITE-EU {cation-optimisation.

4.6.4 Dependency of component on other components and stand-alone usage of component

Initial integration of MODAK in the SODALITE framework has been implemented (see D4.2). MODAK
itself can be used as a standalone package, following the instructions available in the component

D6.6 SODALITE framework - second version Page 28
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/image-builder
https://github.com/SODALITE-EU/iac-platform-stack
https://github.com/SODALITE-EU/application-optimisation

* Project No 825480. " Sodalite

repository. Integration-wise MODAK has been used in l1aC Blueprint Builder calls for retrieving the
optimised image and job script for the target platform.

4.7 1aC Verifier

4.7.1 Description of component

This component provides a unified REST API for the verification capabilities of Topology Verifier
and Provisioning Workflow Verifier.

See D2.2 (Requirements, KPIs, evaluation plan and architecture - Intermediate version) and D4.2 (laC
Management - Intermediate version) for more information.

4.7.2 Status of implementation

The REST APl was implemented to expose all key verification capabilities of Topology Verifier and
Provisioning Workflow Verifier.

4.7.3 Location of repository and how to build the code

This component is a sub-project under the following GitHub repository. The README file of the
project includes the build instructions.

https://github.com/SODALITE-EU/verification

4.7.4 Dependency of component on other components and stand-alone usage of component

This component exposes the capabilities provided by Topology Verifier and Provisioning Workflow
Verifier as RESTful APIs, and depends on those components.

4.8 Verification Model Builder

4.8.1 Description of component

This component builds the models (e.g., semantic models and Perti-net based models) required for
the verification of a given set of laC artifacts (TOSCA and Ansible).

See D2.2 (Requirements, KPIs, evaluation plan and architecture - Intermediate version) and D4.2 (laC
Management - Intermediate version) for more information.

4.8.2 Status of implementation

The current version of this component can build models required for checking TOSCA files against
the constraints defined by the TOSCA standard. The PetriNet models can be built from the
description files in Petri Net Markup Language (PNML).

4.8.3 Location of repository and how to build the code

This component is a sub-project under the following GitHub repository. The README file of the
project includes the build instructions.

I //githul SODAL ITE-E ificati
4.8.4 Dependency of component on other components and stand-alone usage of component
There are no dependencies, and can be used as a standalone component.

4.9 Topology Verifier

4.9.1 Description of component

This component verifies the constraints over the structures of the TOSCA blueprints. Topology
Verifier uses the verification capabilities provided by OpenStack TOSCA Parser® to detect the
violations of the syntax of blueprints with respect to the TOSCA specification.

D6.6 SODALITE framework - second version Page 29
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/verification
https://github.com/SODALITE-EU/verification

* Project No 825480. ’ Sodalite

See D2.2 (Requirements, KPIs, evaluation plan and architecture - Intermediate version) and D4.2 (laC
Management - Intermediate version) for more information.

4.9.2 Status of implementation

The verification of TOSCA models for syntax errors and non-compliance to the standard (TOSCA
Simple Profile in YAML Version 1.2) has been implemented.

4.9.3 Location of repository and how to build the code

This component is a sub-project under the following GitHub repository. The README file of the
project includes the build instructions.

I) hut SODALITE-EUverificati
4.9.4 Dependency of component on other components and stand-alone usage of component
This component uses Verification Model Builder , and can be used as a standalone component.

4.10 Provisioning Workflow Verifier

4.10.1 Description of component

This component verifies the constraints over the deployment workflow of the application
described in the Ansible (IaC) scripts. We employ Petri net as the formal modelling language, which
is widely used for verifying workflows and business processes.

See D2.2 (Requirements, KPIs, evaluation plan and architecture - Intermediate version) and D4.2 (laC
Management - Intermediate version) for more information.

4.10.2 Status of implementation

The initial support for translating the control flow model of the Ansible plays to Petri Net Markup
Language (PNML) has been implemented.

4.10.3 Location of repository and how to build the code

This component is a sub-project under the following GitHub repository. The README file of the
project includes the build instructions.

I -//githul 'SODALITE-EU /verificati
4.10.4 Dependency of component on other components and stand-alone usage of component

This component uses Verification Model Builder , and can be used as a standalone component.

4.11 Bug Predictor and Fixer

4.11.1 Description of component

This component predicts different types of bugs in TOSCA and Ansible. This includes the
taxonomies covering a wide-range of best/bad practices, bugs and software smells for IaC such as
code smells, design smells, security smells, and linguistic anti-patterns. Then, the tools support for
detecting and correcting those bugs are also developed.

See D2.2 (Requirements, KPIs, evaluation plan and architecture - Intermediate version) and D4.2 (laC
Management - Intermediate version) for more information.

4.11.2 Status of implementation

We developed three types of taxonomies for 1aC: best/bad practices taxonomy, smell taxonomy,
and bug taxonomy. We have developed the support for detecting TOSCA smells with semantic
reasoning, Ansible smells with rule-based reasoning, and Ansible linguistic anti-pattern with NLP
and deep learning.

D6.6 SODALITE framework - second version Page 30
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/verification
https://github.com/SODALITE-EU/verification

* Project No 825480. " Sodalite

4.11.3 Location of repository and how to build the code
This component is a sub-project under the following GitHub repository:

- - ion. The README file of the project includes the

build instructions.

4.11.4 Dependency of component on other components and stand-alone usage of component

This component uses Predictive Model Builder and laC Quality Assessor components.

4.12 Predictive Model Builder

4.12.1 Description of component

This component builds the models that can find the smells in TOSCA and Ansible artifacts. A model
can be a rule-based model, a heuristics based model, and a data-driven (deep learning) model.

See D2.1 (Requirements, KPIs, evaluation plan and architecture - First version) and D4.1 (laC
Management - initial version) for more information.
4.12.2 Status of implementation

A semantic rule based model was built to detect the security smells in TOSCA. An informal rule
based model (Ansible-Lint Rules) was built to detect the code and security smells in Ansible. The
deep learning and NLP based models were built to detect linguistic anti-patterns in Ansible.

4.12.3 Location of repository and how to build the code

This component is a sub-project under the following GitHub repository:

https://github.com/SODALITE-EU/defect-prediction. The README file of the project includes the
build instructions.

4.12.4 Dependency of component on other components and stand-alone usage of component
This component is used by Bug Predictor and Fixer, and depends on Semantic Reasoner and KB.

4.13 laC Quality Assessor

4.13.1 Description of component
This component can calculate different software quality metrics for 1aC artifacts.

See D2.1 (Requirements, KPIs, evaluation plan and architecture - First version) and D4.1 (laC
Management - initial version) for more information.

4.13.2 Status of implementation

A set of the metrics for Ansible was developed. A REST APl was also developed.

4.13.3 Location of repository and how to build the code
This component is at the following GitHub repository:

https://github.com/SODALITE-EU/iac-quality-framework. The README file of the repository

includes the build instructions.

4.13.4 Dependency of component on other components and stand-alone usage of component

This component is used by Bug Predictor and Fixer. This component can be used as a standalone
component/library.

4.14 Platform Discovery Service

4.14.1 Description of component
The Platform Discovery Service creates a TOSCA platform resource model definition based on
access data and type provided by the Resource Expert. See D2.2 (Requirements, KPIs, evaluation

D6.6 SODALITE framework - second version Page 31
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/defect-prediction
https://github.com/SODALITE-EU/defect-prediction
https://github.com/SODALITE-EU/iac-quality-framework

* Project No 825480. " Sodalite

plan and architecture - Intermediate version) and D4.2 (laC Management - Intermediate version) for
more information.

4.14.2 Status of implementation

Platform Discovery Service exposes an API able to provide TOSCA resource model definitions for
HPC clusters like Torque/Slurm, Openstack private Cloud and partially AWS.

4.14.3 Location of repository and how to build the code
This component is described and implemented under the following GitHub repository:

4.14.4 Dependency of component on other components and stand-alone usage of component

This component depends on the inputs from the IDE component provided by the Resource Expert
as platform project definition and platform access data (credentials) for accessing and running
discovery of the platform.

4.15 laC Model Repository

4.15.1 Description of component
laC Model Repository is a part of the Knowledge Base and contains:
e Performance Model of an infrastructure based on benchmarks.
e Performance Model of an Application based on scaling runs done in the past.
e Mapping of optimisations and applications and their suitability for a particular
infrastructure.
e Optimisation recipe for a particular deployment. This contains selected optimisations by
the user for an application and infrastructure target.

4.15.2 Status of implementation

A preliminary version of the repository is implemented as a MySQL database. A Python script is
used to access the stored data. It will extend in Y3 to have full access from the MODAK performance
optimiser.

4.15.3 Location of repository and how to build the code

The current implementation of the component is described and implemented under the following
GitHub repository: https://github.com/SODALITE-EU/application-optimisation.

4.15.4 Dependency of component on other components and stand-alone usage of component

laC Model Repository interacts with the SODALITE IDE and contains the Performance Model of
infrastructure and application (offline analysis). This component can be used as a standalone
component.

D6.6 SODALITE framework - second version Page 32
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/platform-discovery-service
https://github.com/SODALITE-EU/application-optimisation

* Project No 825480. ’ Sodalite

5 Runtime Layer Components

This section lists the components of the Runtime Layer, describing each component’s function,
implementation status, and code repository. This section updates the component status reported
in D6.5 (SODALITE Framework - First Version). A concise list of improvements of the current release
over the previous release appears in section 2.1. Additional details can be found in deliverable D5.2
(Application deployment and dynamic runtime - intermediate version).

5.1 Orchestrator - xOpera

5.1.1 Description of component

SODALITE uses xOpera as the base orchestrator. xOpera is an open source lightweight TOSCA 1.3
Simple YAML compliant orchestrator, which uses Ansible as the actuation scripting language for
agentless provisioning, configuration and application lifecycle management on heterogeneous
platforms.

5.1.2 Status of implementation

xOpera aims to be a simple and lightweight TOSCA 1.3 compliant orchestrator. SODALITE
developed and deployed a dockerized version of the REST APl implementation of xOpera
functionalities to the testbed by a prepared laC deployment blueprint. The development of xOpera
is ongoing as it aims to implement TOSCA yaml 1.3 standard. Currently used version of xOpera is
0.6.4.

5.1.3 Location of repository and how to build the code

This component is referenced as a GitHub submodule in the following GitHub repository:
5.1.4 Dependency of component on other components and stand-alone usage of component
xOpera is a stand-alone tool, independent of other SODALITE components.

5.2 xOpera REST API

5.2.1 Description of component

xOpera REST APl implements endpoint interfaces encapsulating xOpera orchestrator
functionalities and extending deployments with blueprint persistence, session management,
status of deployment, history of deployment documented with Swagger Ul. The dockerized REST
APl enables transportability and easy integration with other SODALITE components.

5.2.2 Status of implementation

xOpera REST APl is developed inside the SODALITE project and currently supports deployments to
platforms such as HPC (Torque/Slurm), Openstack, AWS and Kubernetes. Recent extensions to
xOpera and the REST API support the targeted functionalities needed in SODALITE with special
focus on concurrent multi-platform application deployment, resuming deployments and
deployment reconfiguration.

5.2.3 Location of repository and how to build the code
This component is implemented and developed in the following GitHub repository:

https://github.com/SODALITE-EU/xopera-rest-api. The README files provide extensive information

on setting up a working REST APl environment.

5.2.4 Dependency of component on other components and stand-alone usage of component
xOpera REST APl is a stand-alone tool, independent of other SODALITE components.

D6.6 SODALITE framework - second version Page 33
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/orchestrator
https://github.com/SODALITE-EU/xopera-rest-api

* Project No 825480. /’ Sodalite

5.3 Deployment Refactorer

5.3.1 Description of component

The refactoring of the deployment model of a running application is performed in response to the
potential violations of the application goals, which is determined using the monitoring data. The
refactoring can find and enact a new deployment model for the application that can resolve the
detected goal violations. The refactoring decisions making employs both rule-based techniques as
well as machine learning based techniques. Refactorer can also detect the anomalies in the
performance of the application deployment. See D2.2 (Requirements, KPIs, evaluation plan and
architecture - Intermediate version) and D5.2 (Application deployment and dynamic runtime -
Intermediate version) for more information.

5.3.2 Status of implementation

We developed the component and demonstrated its practicality and feasibility by applying it to 1)
an extension of the RuBiS benchmark application® ** deployed on Google’s Compute Engine (92
deployment alternatives), 2) Teastore microservice benchmark® application on Google
Kubernetes Engine (78 deployment alternatives) and SODALITE snow use case. The experimental
results using the predictive algorithms demonstrated the effectiveness of our proposed approach,
accurately predicting the performance of deployment configurable cloud applications. We
developed the rule-based adaptation support, and validated it with three key scenarios in the
Vehicle 10T use case: location-aware redeployment, alert-driven redeployment with Cloud alerts,
alert-driven redeployment with Edge alerts. We have been experimenting with a recent
microserice memory anomaly dataset® using three predictive algorithms Random Forest, Decision
Tree* and Deep Learning with AdaBoost®. We have started to collect a service network anomaly
dataset with TeaStore microservice benchmark®, Google kubernetes Engine, and SODALITE
SkyDive monitoring support.

5.3.3 Location of repository and how to build the code

This component is in the following GitHub repository. The README file of the repository includes
the build instructions.

I -//githul SODAL[TE-EU/ref —
5.3.4 Dependency of component on other components and stand-alone usage of component

This component depends on Monitoring Layer, Orchestrator, Node Manager, Refactoring Option
Discoverer, and Deployment Preparation API.

5.4 Node Manager

5.4.1 Description of component

Node Manager is in charge of managing existing resources deployed by the SODALITE users or by
other SODALITE components. Node Manager goal is to fulfil requirements on the response time
while minimizing resource consumption of multiple concurrent applications. Node Manager
operates on three levels: at the cluster level, it gathers the applications’ requests that are
efficiently scheduled using custom algorithms on fast GPUs or CPUs. At the machine level, it
manages resource contention scenarios that arise from the execution of multiple concurrent
containers on the machine. At the container level, control-theoretical planners continuously
re-configure containers’ CPU resources (vertical scalability) given the current workload,
performance and the utilization of the GPUs.

5.4.2 Status of implementation

Node Manager is implemented in Python as a set of distributed components. It exploits Kubernetes
to ease the deployment of containerized applications. The entrypoint of the Node Manager is a
launcher that takes a TOSCA blueprint with minimal information about the user applications and

D6.6 SODALITE framework - second version Page 34
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/refactoring-ml

* Project No 825480. /’ Sodalite

automatically generates Kubernetes deployments and starts the control loops. Node Manager was
tested with four benchmark applications: Skyline Extraction from SnowUC, GooglLeNet, ResNet,
and VGG-16. Additional details can be found in deliverable D5.2 (Application deployment and
dynamic runtime - intermediate version).

5.4.3 Location of repository and how to build the code

This component is in the following GitHub repository. The README file in the repository contains
architecture details and run instructions.

5.4.4 Dependency of component on other components and stand-alone usage of component

This component currently does not depend on any SODALITE component. In Y3, it will be
integrated with the Monitoring and Deployment Refactorer.

5.5 Refactoring Option Discoverer

5.5.1 Description of component

Refactoring Option Discoverer supports discovering TOSCA Compliant deployment options by
leveraging semantic matchmaking. The search criteria can be user-defined constraints,
infrastructure design patterns and anti-patterns. See D2.2 (Requirements, KPIs, evaluation plan and
architecture - Intermediate version) and D5.2 (Application deployment and dynamic runtime -
Intermediate version) for more information.

5.5.2 Status of implementation

Refactoring Option Discoverer supports matchmaking based on node properties, node capabilities
and requirements, and node policies (TOSCA policies).

5.5.3 Location of repository and how to build the code

This component is in the following GitHub repository. The README file of the repository includes
the build instructions.

5.5.4 Dependency of component on other components and stand-alone usage of component
This component depends on the Semantic Reasoner.

5.6 ALDE

5.6.1 Description of component

ALDE’ (Application Lifecycle Deployment Engine) is a REST API responsible for managing the
workload scheduling and execution of applications, primarily intended for HPC environments.

5.6.2 Status of implementation

Since it is an outcome of the TANGO*' project, an extension of the support to the Torque scheduler
for HPC environments has been developed. The development has been completed and tested
together with the rest of the innovations such as the CI/CD integration to the DockerHub.

5.6.3 Location of repository and how to build the code

This component is in the following GitHub repository:

The code and installation manual are located inside the repository. The README file in the
repository contains the installation description together with some configuration examples.

5.6.4 Dependency of component on other components and stand-alone usage of component

ALDE requires an HPC environment in order to be operative, therefore an initial setup is necessary
to configure the communications and the administrative permissions on the HPC side. Once a user

D6.6 SODALITE framework - second version Page 35
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/refactoring-ct
https://github.com/SODALITE-EU/refactoring-option-discoverer
https://github.com/SODALITE-EU/alde

* Project No 825480. ’ Sodalite

is created and placed in the ALDE server, ALDE is fully capable of operating the HPC environment
deploying Singularity containers by using its REST APl interface.

5.7 Monitoring - Prometheus/Consul

5.7.1 Description of component

Prometheus® is an open source system monitoring and alerting toolkit. Exporters deployed on the
various machines within a cluster periodically collect system information, which is stored in a
central database. The data can then be queried, filtered and analyzed according to the needs of the
client (either an end-user or another component of the SODALITE stack). Prometheus is not
responsible for keeping a list of monitoring targets, this task being delegated to the Consul
instance. Consul offers a REST API through which services can be registered, the properties of each
service being specified in a JSON file passed along with the registration request. Prometheus can
be configured to retrieve exporter endpoints seamlessly from the Consul service registry.

5.7.2 Status of implementation

Prometheus and Consul are baseline, open source, third party components adopted by SODALITE.
See dynamic monitoring in D5.2 (Application deployment and dynamic runtime - intermediate
version). Additionally, TOSCA based blueprints and Ansible playbooks have been implemented for
supporting Prometheus deployment as part of the SODALITE stack.

5.7.3 Location of repository and how to build the code

Prometheus source code may be cloned from https://github.com/prometheus/prometheus.
Instructions to configure and run Prometheus are in the following location:

https://prometheus.io/docs/prometheus/latest/getting_started/. Consul can be download from its

Web site: https://www.consul.io/
See D5.2 for additional details on the adoption of Prometheus in the SODALITE stack.

5.7.4 Dependency of component on other components and stand-alone usage of component

In SODALITE, Prometheus requires integration with Consul and the registered exporters.

5.8 Alert Manager/Rule File Server

5.8.1 Description of component

AlertManager handles the alerts triggered by the Prometheus server and notifies any component or
actor subscribed to them, such as the Orchestrator and the Refactoring, which apply adaptations
in the resources available according to any relevant change on the infrastructure derived from the
alerts triggered. These alerts are defined for each application on rule files that are kept by the Rule
File Server. This server offers a REST API that allows the applications to register rule files in order to
be evaluated by the Prometheus component, which is properly configured to access those files.

5.8.2 Status of implementation

The Alert Manager is deployed in its own container using the official Docker image and registered
within Prometheus. An implementation of the Rule Server, written in Python, with Flask and
Gunicorn is deployed as a Docker container and offers the Rule File API to register/unregister
alerting rules.

5.8.3 Location of repository and how to build the code

The repository (https://github.com/SODALITE-EU/monitoring-system/tree/master/ruleserver) is
hosted inside of the SODALITE GitHub page and it contains the build procedure and a description
of its functioning.

5.8.4 Dependency of component on other components and stand-alone usage of component
Alert Manager requires a Prometheus instance for registration.

D6.6 SODALITE framework - second version Page 36
© Copyright Beneficiaries of the SODALITE Project

https://github.com/prometheus/prometheus
https://prometheus.io/docs/prometheus/latest/getting_started/
https://www.consul.io/
https://github.com/SODALITE-EU/monitoring-system/tree/master/ruleserver

* Project No 825480. /’ Sodalite

5.9 Node Exporter

5.9.1 Description of component

Node Exporter” is a piece of software that exposes hardware metrics to be gathered by
Prometheus. It gathers metrics related to CPU (such as usage, frequency, etc), memory, I/O and
network, among others, providing an insight on resource utilization.

5.9.2 Status of implementation

Node Exporter is a baseline, open source, third party exporter shipped within Prometheus and
adopted by SODALITE. At this reporting stage, Node Exporter automatic deployment has been
improved to support Consul registration (See Node Exporter in D5.2).

5.9.3 Location of repository and how to build the code

A list of the metrics that Node Exporter exposes can be found in its repository together with its
requirements and installation process. (https://github.com/prometheus/node_exporter).

5.9.4 Dependency of component on other components and stand-alone usage of component

Node Exporter requires a Consul instance for registration.

5.10 IPMI Exporter

5.10.1 Description of component

IPMI Exporter® is another Prometheus exporter created to expose the power measurements of the
physical nodes given by the output of one command. It can also be adapted to expose any metric
that is outputted by any CLI command.

5.10.2 Status of implementation

IPMI Exporter is a SODALITE open source component and can accept modifications performed or
suggested by the community. In its current state, it only exposes one metric, but this can be easily
expanded if more are required. IPMI Exporter automatic deployment has been improved to support
Consul registration (See IPMI Exporter in D5.2).

5.10.3 Location of repository and how to build the code

The repository (https://github.com/SODALITE-EU/ipmi-exporter) is hosted inside of the SODALITE
GitHub page and it contains the build procedure and a description of its functioning.

5.10.4 Dependency of component on other components and stand-alone usage of component
IPMI Exporter requires a Consul instance for registration.

5.11 HPC Exporter

5.11.1 Description of component

The HPC Exporter collects metrics about different aspects of HPC infrastructure usage from both
performance and cost viewpoints: job status, CPU and wall time consumption, physical and virtual
memory consumption, energy consumption, traffic for 1/0O and network communications, etc.
Different types of HPC job schedulers are supported, starting with PBS Professional and Slurm in
the current implementation.

5.11.2 Status of implementation

HPC Exporter implementation is completed as a standalone exporter, packaged within a Docker
container, and configurable through the command line interface. Upon initialization, it registers
itself in Consul so that it gets required by Prometheus to provide metrics about job execution in
configured target HPC clusters. See HPC Exporter documentation in GitHub repository link.

D6.6 SODALITE framework - second version Page 37
© Copyright Beneficiaries of the SODALITE Project

https://github.com/prometheus/node_exporter
https://github.com/SODALITE-EU/ipmi-exporter

* Project No 825480. ? Sodalite

5.11.3 Location of repository and how to build the code

The repository (https://github.com/SODALITE-EU/hpc-exporter) is hosted inside of the SODALITE
GitHub page and it contains the build procedure and a description of its functioning.

5.11.4 Dependency of component on other components and stand-alone usage of component
HPC Exporter requires a Consul instance for registration.

5.12 Skydive

5.12.1 Description of component

Skydive® is a real-time network topology and protocol analyzer that provides detailed network
topology and performance information. Skydive agents collect topology information and flows and
forward them to a central agent for further analysis. A more detailed summary is in deliverable D5.1
(Application deployment and dynamic runtime - initial version) and additional details are available

on the Skydive site (http://skydive.network/documentation/).

5.12.2 Status of implementation

Skydive is a stable open source project with community support. New features are added on an
on-going basis. IBM team members are regular contributors to the Skydive community. In 2019,
IBM team members implemented and released a generic flow exporter for Skydive to expose the
Skydive flow data in a convenient form to various consumers. The prometheus-skydive connector
is built on top of the flow exporter. In 2020, the prometheus-skydive connector was hardened and
was pushed upstream. A blog describing the use of the prometheus-skydive connector was

prepared and published: http://skydive.network/blog/prometheus-connector.html.

5.12.3 Location of repository and how to build the code
The Skydive code repository is at https://github.com/skydive-project/skydive. Details on how to
deploy Skydive are at http://skydive.network/documentation/getting-started. Pre-compiled

versions of Skydive are availabe at https://github.com/skydive-project/skydive/releases. Details on
how to compile the code from source are at http://skydive.network/documentation/build.

The Skydive flow exporter code repository is at

https://github.com/skydive-project/skydive-flow-exporter, including instructions on how to build
the code. Code and instructions to compile and use the prometheus-skydive connector are at

A documentation on using the prometheus-skydive connector is at

A documentation on the general use of the Skydive flow exporter is at
http://skydive.network/blog/exporters.html.

Adjustments of the prometheus-skydive connector to be used with SODALITE can be found in
https://github.com/SODALITE-EU/skydive-flow-exporter/tree/master/prom_sky_con. These
adjustments include creating a Docker container of the connector, and placing the container in the
SODALITE repository upon successful build using Jenkins.

5.12.4 Dependency of component on other components and stand-alone usage of component
The Skydive tool is comprised of agents that run on each of the monitored machines plus an
analyzer that collects all the data from the various agents. Native host-based tools are used to
collect the topology and metrics information. The core Skydive flow exporter depends on data
supplied by the Skydive analyzer, but is otherwise independent of other tools. The
prometheus-skydive connector is dependent on both the Skydive flow exporter and a Prometheus
server. Data from flows that are captured using Skydive is packaged and forwarded to Prometheus.
Beyond this specific function of acting as a connector, the prometheus-skydive connector is
independent of other SODALITE components.

D6.6 SODALITE framework - second version Page 38
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/hpc-exporter
http://skydive.network/documentation/
http://skydive.network/blog/prometheus-connector.html
https://github.com/skydive-project/skydive
http://skydive.network/documentation/getting-started
https://github.com/skydive-project/skydive/releases
http://skydive.network/documentation/build
https://github.com/skydive-project/skydive-flow-exporter
https://github.com/skydive-project/skydive-flow-exporter/tree/master/prom_sky_con
http://skydive.network/blog/prometheus-connector.html
http://skydive.network/blog/exporters.html
https://github.com/SODALITE-EU/skydive-flow-exporter/tree/master/prom_sky_con

* Project No 825480. /’ Sodalite

5.13 Edge Exporter

5.13.1 Description of component

The Edge Exporter is a meta package that includes multiple exporters for exposing metrics of
specific heterogeneous accelerators found in Edge nodes. The accelerator metrics exposed are
primarily the number of devices, utilization rates, and temperature measurements (where
supported), in order to facilitate thermal-based alerting and reconfiguration.

5.13.2 Status of implementation

At present, initial implementations for the EdgeTPU and Intel Neural Compute Stick 2 (NCS2) have
been completed. Thermal properties of integrated GPUs are already captured and exported via the
aforementioned Node Exporter, so no GPU-specific exporter is presently required. As the
integrated GPUs are exposed in different thermal zones on different Edge nodes, customized
alerting rules must be provided on a per-node basis (this is expected to be simplified through the
utilization of the alerting rule server in Y3).

The NCS2 exporter presently exposes device counts by default, and requires manual
instrumentation in any application using the device in order to make temperature readings
available. This is due to a limitation of the OpenVINO* runtime, which requires a machine learning
model to be loaded onto the device before the temperature reading is exposed internally. A further
limitation is that any use of the OpenVINO runtime directly by the exporter prohibits the device
from being used by other applications, so this limitation is unlikely to go away in the near future.
The intended deployment scenario and application instrumentation can be seen in the figure

below:
gPrometheus }
) 1 T

e
— [nes2_temperature_celsius]

nes2_num_available_devices NCS2 Device Exporter

NCS2 Exporter Inference Application
1 f

i OpenVIN® |

N

Figure 5 - NCS2 Exporter instrumentation requirements

5.13.3 Location of repository and how to build the code

The EdgeTPU exporter, together with building, usage, and deployment instructions is available at:
The NCS2 exporter, together with building, usage, and deployment instructions is available at:
5.13.4 Dependency of component on other components and stand-alone usage of component
Each exporter is provided as a Docker container which can be run standalone, or as part of a
managed Kubernetes deployment. Kubernetes manifests are provided with each exporter to
support node-local and cluster-wide scheduling, and external Helm charts are also available. When
deployed in Kubernetes, each exporter Pod is annotated with a Prometheus scraping annotation,

D6.6 SODALITE framework - second version Page 39
© Copyright Beneficiaries of the SODALITE Project

https://github.com/adaptant-labs/edgetpu-exporter
https://github.com/adaptant-labs/prometheus_ncs2_exporter

* Project No 825480. ? Sodalite

which ensures that each exporter is automatically detected and scraped by the Prometheus server
without any additional configuration required.

6 Conclusion

This document summarizes the SODALITE Framework at the end of the second year of the project.
This comprises what has been achieved for the second SODALITE prototype embodied in Milestone
6 (MS6) of the project. This includes components from all three layers of the Sodalite architecture:
the Modelling Layer, the Infrastructure as Code Layer, and the Runtime Layer.

Improvements of many parts of the prototype are included in the updated SODALITE platform.

e Automated discovery and TOSCA description of infrastructure.

e Support for the creation of Ansible scripts integrated with the Resource Models.

e Static optimisation of applications before deployment (MODAK).

e Semantic and Analysis Support including: Bug Taxonomy; Unified best and bad practices
Catalog; Unified Smell Catalog; Linguistic Anti-pattern detection via NLP and Deep
Learning.

e Orchestration: Improvements to xOpera including Reconfiguration; Parallel execution of
deployment; Resume command; Worklows; REST API.

e Dynamic Monitoring.

e Refactoring.

e Modelling: Support of TOSCA Policies in the Modelling Layer; Improved context assistance
in model authoring; Improved scalability in the semantic services.

All SODALITE components are built and deployed using GitHub and Jenkins.

Sodalite Use-Cases all run on the prototype. Additional details can be found in D6.3 (Intermediate
Implementation and Evaluation of the SODALITE Platform and Use Cases).

Instructions are provided individually for each component on how to compile and use the
component. There is also a blueprint from which it is possible to deploy the entire SODALITE stack.

Video demonstrations of many of these components are presented on the Project’s YouTube
channel.

The next update of this document is D6.7 SODALITE framework - Final version, scheduled for M36 of
the project.

D6.6 SODALITE framework - second version Page 40
© Copyright Beneficiaries of the SODALITE Project

* Project No 825480. ’ Sodalite

7 References

. https://hub.docker.com/u/sodaliteh2020

. https://github.com/SODALITE-EU/iac-platform-stack/tree/master/docker-local

. https://www.sodalite.eu/reports/d24-guidelines-contributors-sodalite-framework

. https://www.youtube.com/channel/UCrArVp55GaJs78jFt1lUfFg

. https://www.sodalite.eu/reports/d21-requirements-kpis-evaluation-plan-and-architecture-first-version

. https://www.sodalite.eu/reports/d31-first-version-ontologies-and-semantic-repository

. https://github.com/SODALITE-EU/iac-platform-stack

https://www.keycloak.org/ Open Source Identity and Access Management for Modern Applications and
Services

9. https://www.vaultproject.io/ Secure, store and tightly control access to tokens, passwords, certificates,
encryption keys for protecting secrets and other sensitive data using a Ul, CLI, or HTTP API.

10. https://docs.google.com/document/d/1w6wYJbTZvBbt5LD6sXReXbx1uPDjefYFAUSKEV8X_8w

11. http://graphdb.ontotext.com/

12. https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

13. https://www.ansible.com/

14, TensorFlow: an end-to-end open source platform for machine learning, https://www.tensorflow.org/,
2021.

15. PyTorch: an open source machine learning framework, https://pytorch.org/, 2021.

16. MXnet: a deep learning framework designed for both efficiency and flexibility, https://mxnet.apache.org/,
2021.

17. MPICH: High performance and portable MPI, https://www.mpich.org/, 2021.

18. OpenMPI: Open Source High Performance Computing, https://www.open-mpi.org/, 2021.

19. https://github.com/openstack/tosca-parser

20. https://github.com/uillianluiz/RUBIS

21. https://github.com/SODALITE-EU/refactoring-ml/tree/master/benchmarks-apps

22. https://github.com/DescartesResearch/TeaStore

23. Lomio, Francesco, et al. "RARE: a labeled dataset for cloud-native memory anomalies." Proceedings of
the 4th ACM SIGSOFT International Workshop on Machine-Learning Techniques for Software-Quality
Evaluation. 2020.

24. Ali, Jehad, et al. "Random forests and decision trees." International Journal of Computer Science Issues
(1JCSI) 9.5 (2012): 272.

25. Schapire, Robert E. "Explaining adaboost." Empirical inference. Springer, Berlin, Heidelberg, 2013. 37-52.
26. Eismann, Simon, et al. "TeaStore: A Micro-Service Reference Application for Cloud Researchers." 2018
IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion). IEEE,
2018.

27. http://www.tango-project.eu/content/application-lifecycle-deployment-engine-alde

28. https://prometheus.io

29. https://github.com/prometheus/node_exporter

30. https://github.com/SODALITE-EU/ipmi-exporter

31. http://skydive.network

32. https://docs.openvinotoolkit.org/latest/index.html

33. Prometheus is an open source baseline component

34. Consul is a open source baseline component

35. Prometheus is a opensource baseline component

36. https://github.com/uillianluiz/RUBIS

37. https://github.com/SODALITE-EU/refactoring-ml/tree/master/benchmarks-apps

38. Lomio, Francesco, et al. "RARE: a labeled dataset for cloud-native memory anomalies." Proceedings of
the 4th ACM SIGSOFT International Workshop on Machine-Learning Techniques for Software-Quality
Evaluation. 2020.

39. Eismann, Simon, et al. "TeaStore: A Micro-Service Reference Application for Cloud Researchers." 2018
IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion). IEEE,
2018.

~No o b~ WN R

o

D6.6 SODALITE framework - second version Page 41
© Copyright Beneficiaries of the SODALITE Project

https://hub.docker.com/u/sodaliteh2020
https://github.com/SODALITE-EU/iac-platform-stack/tree/master/docker-local
https://www.sodalite.eu/reports/d24-guidelines-contributors-sodalite-framework
https://www.youtube.com/channel/UCrArVp55GaJs78jFt1lUfFg
https://www.sodalite.eu/reports/d21-requirements-kpis-evaluation-plan-and-architecture-first-version
https://www.sodalite.eu/reports/d31-first-version-ontologies-and-semantic-repository
https://www.keycloak.org/
https://www.vaultproject.io/
http://graphdb.ontotext.com/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.ansible.com/
https://www.tensorflow.org/
https://pytorch.org/
https://mxnet.apache.org/
https://www.mpich.org/
https://www.open-mpi.org/
https://github.com/openstack/tosca-parser
http://www.tango-project.eu/content/application-lifecycle-deployment-engine-alde
https://prometheus.io/
https://github.com/prometheus/node_exporter
https://github.com/SODALITE-EU/ipmi-exporter
http://skydive.network/
https://docs.openvinotoolkit.org/latest/index.html

* Project No 825480. ? Sodalite

Appendix A - Reference Component Definition

In this appendix, we collect all the component status information and present it in a compact,
tabular format.

Appendix A.1 SODALITE Semantic Modelling Layer

A.1.1 SODALITE IDE

Module name IDE

GitHub location https://github.com/SODALITE-EU/ide
Documentation README file

Downloadable artifacts IDE Docker image

Released versions:
1. M24 Release-31/01/2021
a. Model (AADM, RM) Governance
i. CRUD Operations on KB
ii. Governance view
b. Improved support of policies in AADM
and RM
¢. Support for modulesin AADM and RM
d. Improved content assistance for AADMs
and RMs
e. AAl communications with SODALITE
backend
f. Improved IDE configuration
g. Improved IDE tutorial
h. Extensionsin DSLs for AADMs and RMs
i. Improved AADM visual representation
j. Improved AADM deployment wizard
k. AADM outline
. Improvements in syntactic and semantic
validation
m. Ansible DSL and editor
n. Improved modeling (AADM, RM) of all
SODALITE Use Cases
o. IDE update site in GitHub Pages
Update to latest Eclipse version

Development status

2. M18 Release-02/10/20

AADM and RM DSLs

AADM and RM textual editors

Content assistance for AADMs and RMs
Saving AADMs and RMs in KB

Syntactic and semantic validation using
the KB

Poo0 oo

D6.6 SODALITE framework - second version Page 42
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/ide
https://github.com/SODALITE-EU/ide/blob/master/README.md
https://hub.docker.com/r/sodaliteh2020/sodalite-ide
https://github.com/SODALITE-EU/ide/releases/tag/M18Release

SN Project No 825480.

‘¥ Sodalite

i. notification of reported issues in
model editor
f. AADM deployment using laC and Runtime
Layers
g. Extensions in AADM and RM grammars for
UC requirements
h. Optimisation model DSL and editor
i. KB optimisation suggestions
AADM deployment wizard
AADM creation wizard
k. AADM visual representation
IDE configuration
m. IDE build and publish pipeline for CI/CD
i. IDE update site
ii. IDE Docker container
n. Modeling (AADM, RM) of all UCs
o. IDE tutorial

—_— —

The IDE is a standalone component to be installed locally
by the end-user from the IDE Eclipse update site as
Deployment status explained in the README file. Alternatively, an IDE
container can be instantiated from the IDE Docker image

Integration status °

The IDE interacts with the following SODALITE backend
services:

KB for CRUD operations on models (AADM, RM)
stored in the KB, as well as to get KB knowledge
inference and semantic validation for model
authoring.

laC Layer, to register AADMs to be deployed
Runtime Layer, concretely with the Orchestrator,
to deploy AADMs

AAIl Layer, to authenticate the IDE user and get
the security token required for securing all IDE-
backend interactions.

Dependencies

The IDE depends on the KB, the laC Builder, the
Orchestrator and the KeyCloak components.

Next steps °

AADM Deployment and Lifecycle Governance
view

AADM visual modeling

Further required improvements in existing
features

Further required integration requirements

Table 2 - Development status of the IDE

D6.6 SODALITE framework - second version
© Copyright Beneficiaries of the SODALITE Project

Page 43

https://github.com/SODALITE-EU/ide/blob/master/README.md
https://hub.docker.com/r/sodaliteh2020/sodalite-ide

** Project No 825480. ? Sodalite

A.1.2 Semantic Reasoner

Module name Semantic Reasoning Engine

GitHub location https://github.com/SODALITE-EU/semantic-reasoner
Documentation README file

Downloadable artifacts Semantic Reasoner Docker image

Released versions:
1. Currentversion - M24 Release - 31/01/21
a. User Management
b. Support of TOSCA Policies
c. Enriched context-assistance
2. 0.2.2-10/12/20
d. Support of workspaces
3. M18Release - 02/10/20
e. Optimisation DSL suggestions
Development status f. Making DSL more abstract
4. 0.1.0
g. Provides the basic reasoning
infrastructure to WP4 for
developing, searching and
validation services; it provides
the REST API that can be used to
save and get data from the
semantic triple store.

Semantic Reasoning Engine has been deployed in a
Deployment status Docker container on a cloud testbed.

Semantic Reasoning Engine is integrated with:
e IDE (It pushes DSL definitions using the REST API
through HTTP calls)
e AAlusing Auth API
e Bug Predictor (detects security smells on TOSCA)

Integration status

This module depends on Semantic Knowledge Base and

5 , :
ependencies Bug Predictor.

Providing more intelligent context-assistance services,

Next steps and more validation cases.
Table 3 - Development status of Semantic Reasoning Engine
D6.6 SODALITE framework - second version Page 44

© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/semantic-reasoner
https://github.com/SODALITE-EU/semantic-reasoner
https://hub.docker.com/r/sodaliteh2020/semantic_web
https://github.com/SODALITE-EU/semantic-reasoner/releases/tag/0.2.2
https://github.com/SODALITE-EU/semantic-reasoner/releases/tag/M18Release
https://github.com/SODALITE-EU/semantic-reasoner/releases/tag/0.1.0

SN Project No 825480.

‘¥ Sodalite

Module name

Semantic Population Engine

GitHub location

https://github.com/SODALITE-EU/semantic-reasoner

Documentation

README

Downloadable artifacts

Semantic Reasoner Docker image

Development status

Released versions:

1. Current version - M24 Release -31/01/21
a. UserManagement
b. Support of TOSCA Policies

2. 0.2.2-10/12/20
c. Support of workspaces

3. 0.1.0
d. Savinginfrastructure resources
e. Saving application resources

Deployment status

Semantic Reasoning Engine has been deployed in a
Docker container on a cloud testbed.

Integration status

Semantic Reasoning Engine is integrated with:
e [DE (It pushes DSL definitions using the REST API
through HTTP calls)
e AAl using Auth API

Dependencies

This module depends on Semantic Knowledge Base and
Bug Predictor.

Next steps

Covering more coverage to the TOSCA Specification

Table 4 - Development status of Semantic Population Engine

A.1.3 Semantic Knowledge Base

Module name

RDF Triple Store

GitHub location

N/A

Downloadable artifacts

Knowledge Base Docker image

Development status

N/A

Deployment status

Deployed on a cloud testbed in a Docker container

Integration status

Integrated with the Semantic Reasoner on a cloud
testbed.

D6.6 SODALITE framework - second version Page 45
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/semantic-reasoner
https://github.com/SODALITE-EU/semantic-reasoner
https://hub.docker.com/r/sodaliteh2020/semantic_web
https://github.com/SODALITE-EU/semantic-reasoner/releases/tag/0.2.2
https://github.com/SODALITE-EU/semantic-reasoner/releases/tag/0.1.0
https://hub.docker.com/r/sodaliteh2020/graph_db

Project No 825480.

‘¥ Sodalite

Dependencies

N/A

Next steps

N/A

Table 5 - Development status of RDF Triple Store

Module name

Domain Ontologies

GitHub location

https://github.com/SODALITE-EU/semantic-models

Development status

Released version - v0.3.0

Deployment status

Deployed on a cloud testbed in a Docker container

Integration status

Ontologies have been imported into the RDF triple store,
implementing the conceptual model of SODALITE

Integration issues/dependencies

N/A. There are no dependencies. Ontologies need to be
inline with the conceptual model of SODALITE and the
Semantic Population Engine (that is responsible for
populating the triple store with instances)

Next steps

Updates on the vocabulary, according to the modelling
requirements

Table 6 - Development status of Domain Ontologies

A.1.4 Development plan for Semantic Modelling Layer

The development plan is presented in the following table.

M12 M18 M24 M30 M36
SODALITE IDE

- AADM and RM - Extended - Model - Deployment - Improvement of
DSLs AADM and RM Governance View | Governance View | existing features
- AADM and RM DSLs -Model CRUDin | - AADM Visual - Further
textual editors - AADM visual KB Modeling integration with
- AADM and RM representation | - AAl for secure - Ansible SODALITE layer
save in KB - Editor content | interoperability | integration
- Basic content assistance - Ansible DSL and | - Improved of
assistance - Syntacticand [Editor existing features

semantic - Support for - Further

validation policies integration with

- IDE - Support for SODALITE layer

configuration modules

- AADM - AADM outline

D6.6 SODALITE framework - second version
© Copyright Beneficiaries of the SODALITE Project

Page 46

https://github.com/SODALITE-EU/semantic-models

* Project No 825480. ? Sodalite

creation wizard

- AADM

deployment

wizard

- Optimisation

DSL and

textual editor

- IDE tutorial

- IDE CI/CD

Semantic Reasoner

- Population of KB | - Population of | - User -Runtime - Evaluation of
with application KB with Management optimisation the ontology
instances infrastructure - Workspaces suggestions - Advanced
- User instances - Tosca Policies - User reasoning and
context-assistance | - Optimisation | - Validation of context-assistan | discovery
vl DSL models v2 ce vl
- Validation of suggestionsvl | - User - Validation of
models vl - User context-assistan | models v3

context-assista | cev3 - Versioning

ncev2 - Optimisation -Suggestions of

- Making DSL DSL suggestions | fixes for tosca

more abstract | v2 and Ansible

- Integration - Integration with | smells

with Bug Platform

Predictor Discovery Service

Table 7 - Development plan for Semantic Modelling Layer

Appendix A.2 SODALITE Infrastructure as Code Layer

A.2.1 Abstract Model Parser

Module name lac-Blueprint-Builder

GitHub location https://github.com/SODALITE-EU/iac-blueprint-builder

README in the repository

Documentation https://github.com/SODALITE-EU/iac-blueprint-builder/b
lob/master/README.md

https://hub.docker.com/r/sodaliteh2020/iac-blueprint-b

Downloadable artifacts .
uilder

D6.6 SODALITE framework - second version Page 47
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/iac-blueprint-builder
https://github.com/SODALITE-EU/iac-blueprint-builder/blob/master/README.md
https://github.com/SODALITE-EU/iac-blueprint-builder/blob/master/README.md
https://hub.docker.com/r/sodaliteh2020/iac-blueprint-builder
https://hub.docker.com/r/sodaliteh2020/iac-blueprint-builder

* Project No 825480. ’ Sodalite

Code has been refactored and the issues related to the
Development status output have been solved. Minor bugs have also been
fixed and the optimisation integration implemented.

Automatically deployed on the testbed using xOpera
Deployment status lightweight orchestrator and the deployment blueprint
through Jenkins CI/CD process

Integrated with lac Blueprint Builder, and lac Resources

Integration status Model
Dependencies Python, Flask, flask-swagger-ui, xOpera, Ansible, Docker
Next steps Authorization/Authentication and more unit tests/

Table 8 - Development status of Abstract Model Parser

A.2.2 1aC Blueprint Builder

Module name lac-Blueprint-Builder

GitHub location https://github.com/SODALITE-EU/iac-blueprint-builder

README in the repository

Documentation https://github.com/SODALITE-EU/iac-blueprint-builder/b
lob/master/README.md

https://hub.docker.com/r/sodaliteh2020/iac-blueprint-b

Downloadable artifacts .
uilder

Code has been refactored and the issues related to the
Development status output have been solved. Minor bugs have also been
fixed and the optimisation integration implemented.

Automatically deployed on the testbed using xOpera
Deployment status lightweight orchestrator and the deployment blueprint
through Jenkins CI/CD process

Integrated with Sodalite IDE, Abstract Model Parser,

Integration status Image Builder, laC Resources Model, and Application
Optimiser.

Dependencies Python , Flask, flask-swagger-ui, xOpera, Ansible, Docker

Next steps Authorization/Authentication and more unit tests.

Table 9 - Development status of 1aC Blueprint Builder

D6.6 SODALITE framework - second version Page 48
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/iac-blueprint-builder
https://github.com/SODALITE-EU/iac-blueprint-builder/blob/master/README.md
https://github.com/SODALITE-EU/iac-blueprint-builder/blob/master/README.md
https://hub.docker.com/r/sodaliteh2020/iac-blueprint-builder
https://hub.docker.com/r/sodaliteh2020/iac-blueprint-builder

* Project No 825480. " Sodalite

A.2.3 Runtime Image Builder

Module name Image-builder

GitHub location https://github.com/SODALITE-EU/image-builder

Extensive README in the repository

Documentation https://github.com/SODALITE-EU/image-builder/blob/mas
ter/README.md

https://hub.docker.com/r/sodaliteh2020/image-builder-ap
Downloadable artifacts i
https://hub.docker.com/r/sodaliteh2020/image-builder-cli

M12:
e Initial commit
e Flask REST API with Swagger Ul for testing
e Dockerized
e deployed to testbed
M18:

e Added production security configuration with nginx
as reverse proxy
e allowed configuration for host and port through
ENV
TOSCA 1.3 support for deployment to testbed
Added extensive tests
Support building image variants with layered base
containers
e Add support for the EdgeTPU exporter to the
Vehicle loT UC
e improved documentation
M24:

Development status °

Added support for SonarCloud QA coverage

Core tests for pytest integration

Several SonarCloud Suggestion fixed

Replaced nginx with traefik for easier container
management and integration

e upgraded CI/CD process

Automatically deployed on the testbed using xOpera
Deployment status lightweight orchestrator and the deployment blueprint
through Jenkins CI/CD process

Integrated with Image Registry, missing integration with
Integration status IDE

) Python , Flask, xOpera, Ansible, Docker, Concrete Image
Dependencies Builder

D6.6 SODALITE framework - second version Page 49
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/image-builder
https://github.com/SODALITE-EU/image-builder/blob/master/README.md
https://github.com/SODALITE-EU/image-builder/blob/master/README.md
https://hub.docker.com/r/sodaliteh2020/image-builder-api
https://hub.docker.com/r/sodaliteh2020/image-builder-api
https://hub.docker.com/r/sodaliteh2020/image-builder-cli

SN Project No 825480.

‘¥ Sodalite

Next steps

Integration with IDE, add multi-architecture build variants

Table 10 - Development status of Runtime Image Builder

A.2.4 Concrete Image Builder

Module name

Image-builder

GitHub location

https://github.com/SODALITE-EU/image-builder

Documentation

Extensive README in the repository

https://github.com/SODALITE-EU/image-builder/blob/mast
er/README.md

Downloadable artifacts

https://hub.docker.com/r/sodaliteh2020/image-builder-api
https://hub.docker.com/r/sodaliteh2020/image-builder-cli

Development status

M12:

Initial commit

Flask REST API with Swagger Ul for testing
Dockerized

deployed to testbed

M18:
Improved workflows
support for TAR sources
TOSCA 1.3 support in the workflows
Added extensive tests
Support building image variants with layered base
containers
e Add support for the EdgeTPU exporter to the Vehicle
loT UC
M24:
e Nochangesin the workflows

Deployment status

Automatically deployed on the testbed using xOpera
lightweight orchestrator and the deployment blueprint
through Jenkins CI/CD process

Integration status

Integrated with Image Registry, missing integration with IDE

Dependencies

Python , Flask, xOpera, Ansible, Docker, Runtime Image
Builder

Next steps Integration with IDE, add multi-architecture build variants
Table 11 - Development status of Concrete Image Builder
D6.6 SODALITE framework - second version Page 50

© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/image-builder
https://github.com/SODALITE-EU/image-builder/blob/master/README.md
https://github.com/SODALITE-EU/image-builder/blob/master/README.md
https://hub.docker.com/r/sodaliteh2020/image-builder-api
https://hub.docker.com/r/sodaliteh2020/image-builder-cli

* Project No 825480. ’ Sodalite

A.2.5 Application Optimiser

Module name Application Optimiser - MODAK

GitHub location https://github.com/SODALITE-EU/application-optimisati

on
Documentation README in the repository
Downloadable artifacts https://hub.docker.com/r/modakopt/modak

After an initial preparation phase of the package during
the first year of the project (see D3.3), in the second year
we have further extended MODAK to support HPC
systems cases. In particular, we have prototyped Al
training and inference and traditional HPC applications.
Development status Currently, MODAK supports TensorFlow, PyTorch, MXnet,
mpich, openmpi, and containers for x86 and NVIDIA
GPUs. These containers are further labelled with version
requirements and support for optimisations like graph
compilers or BLAS/LAPACK.

Deployment status Deployed on the Cloud testbed

) Partially integrated into the stack
Integration status Integrated with laC Blueprint Builder

) Standalone service
Dependencies Depends on the IaC Model repository

e Complete integration in the SODALITE framework

e Include the Tuner and Scaler features, and
extend the performance model to include GPU

Next steps execution

e Support of Cloud systems

e Support for big data analytics applications

Table 12 - Development status of Application Optimiser - MODAK

A.2.6 laC Verifier

Module name laC Verifier

GitHub location https://github.com/SODALITE-EU/verification

Documentation README in the repository

Downloadable artifacts https://hub.docker.com/r/sodaliteh2020/iacverifierapi
D6.6 SODALITE framework - second version Page 51

© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/application-optimisation
https://github.com/SODALITE-EU/application-optimisation
https://hub.docker.com/r/modakopt/modak
https://github.com/SODALITE-EU/verification
https://hub.docker.com/r/sodaliteh2020/iacverifierapi

SN Project No 825480.

‘¥ Sodalite

Development status

REST API for both Topology Verifier and Provisioning
Workflow Verifier

Deployment status

Deployed locally and in the Cloud Testbed

Integration status

Integrated with Topology Verifier and Provisioning
Workflow Verifier

Dependencies

Depends on Topology Verifier and Provisioning Workflow
Verifier

Next steps

Integration with IDE and laC Builder

A.2.7 Verification Model Builder

Table 13 - Development status of 1aC Verifier

Module name

Verification Model Builder

GitHub location

https://github.com/SODALITE-EU/verification

Documentation

README in the repository

Downloadable artifacts

https://hub.docker.com/r/sodaliteh2020/workflowverifie
r

Development status

Build models required for checking TOSCA files against
the constraints defined by the TOSCA standard.

Build PetriNet models from the description files in Petri
Net Markup Language (PNML)

Deployment status

Deployed locally and in the Cloud Testbed

Integration status

Integrated with Topology Verifier and Provisioning
Workflow

Dependencies

None

Next steps

Update the models used by the Topology Verifier and
Provisioning Workflow to support more verification cases

Table 14 - Development status of Verification Model Builder

A.2.8 Topology Verifier

Module name

Topology Verifier

D6.6 SODALITE framework - second version Page 52
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/verification
https://hub.docker.com/r/sodaliteh2020/workflowverifier
https://hub.docker.com/r/sodaliteh2020/workflowverifier

* Project No 825480. " Sodalite

GitHub location https://github.com/SODALITE-EU/verification
Documentation README in the repository
Downloadable artifacts https://hub.docker.com/r/sodaliteh2020/toscasynverifier

The verification of TOSCA models for syntax errors and
non-compliance to the standard (1.2) has been

Development status)
implemented.

Deployment status Deployed locally and in the Cloud Testbed
Integration status Integrated with Verification Model Builder and laC Verifier
Dependencies Depends on Verification Model Builder

Checking the compliance of TOSCA models to the newest

Next steps TOSCA standard (1.3)

Table 15 - Development status of Topology Verifier

A.2.9 Provisioning Workflow Verifier

Module name Provisioning Workflow Verifier
GitHub location https://github.com/SODALITE-EU/verification
Documentation README in the repository

https://hub.docker.com/r/sodaliteh2020/workflowverifie
r

Downloadable artifacts

The basic support for translating the control flow model
of the Ansible plays to Petri Net Markup Language (PNML)

Development status ays
models, and verification of those PNML models

Deployment status Deployed locally and in the Cloud Testbed

Integration status Integrated with Verification Model Builder

_ This component depends on the Verification Model
Dependencies Builder, and is used by laC Verifier.

Improved support for the verification of the control flow

Next steps .
P of Ansible playbooks
Table 16 - Development status of Deployment Exporter
D6.6 SODALITE framework - second version Page 53

© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/verification
https://hub.docker.com/r/sodaliteh2020/toscasynverifier
https://github.com/SODALITE-EU/verification
https://hub.docker.com/r/sodaliteh2020/workflowverifier
https://hub.docker.com/r/sodaliteh2020/workflowverifier

* Project No 825480. ’ Sodalite

A.2.10 Bug Predictor and Fixer

Module name Bug Predictor and Fixer
GitHub location https://github.com/SODALITE-EU/defect-prediction
Documentation README in the repository

https://hub.docker.com/r/sodaliteh2020/toscasmells
Downloadable artifacts
https://hub.docker.com/r/sodaliteh2020/ansiblesmells

Three types of taxonomies for laC : best/bad practices
taxonomy, smell taxonomy, and bug taxonomy.
The support for detecting TOSCA smells with semantic

Development status reasoning, Ansible smells with rule-based reasoning,
and Ansible linguistic anti-pattern with NLP and deep
learning.

Deployment status Deployed locally and in the Cloud Testbed

) Integrated TOSCA smell detection capability with IDE
Integration status and Semantic Reasoner

Depends on Predictive Model Builder and l1aC Quality
Dependencies ASSessor

e Integrate Ansible smell detection with IDE

e Misconfiguration Detection in Ansible playbooks
Next steps e Improved support for suggesting fixes for TOSCA
smells

Table 17 - Development status of Bug Predictor and Fixer

A.2.11 Predictive Model Builder

Module name Predictive Model Builder
GitHub location https://github.com/SODALITE-EU/defect-prediction
Documentation README in the repository

https://hub.docker.com/r/sodaliteh2020/toscasmells
https://hub.docker.com/r/sodaliteh2020/ansiblesmells

Downloadable artifacts

A semantic rule based model was built to detect the
Development status security smells in TOSCA. An informal rule based model

D6.6 SODALITE framework - second version Page 54
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/defect-prediction
https://hub.docker.com/r/sodaliteh2020/toscasmells
https://hub.docker.com/r/sodaliteh2020/ansiblesmells
https://github.com/SODALITE-EU/defect-prediction
https://hub.docker.com/r/sodaliteh2020/toscasmells
https://hub.docker.com/r/sodaliteh2020/ansiblesmells

SN Project No 825480.

¥ Sodalite

(Ansible-Lint Rules) was built to detect the code and
security smells in Ansible. The deep learning and NLP
based models were built to detect linguistic anti-patterns
in Ansible.

Deployment status

Deployed locally and in the Cloud Testbed

Integration status

Integrated with Bug Predictor and Fixer

Dependencies

Depends on Semantic Reasoner/knowledgebase

Next steps

Adding more deep learning/machine learning models

Table 18 - Development status of Predictive Model Builder

A.2.12 laC Quality Assessor

Module name

laC Quality Assessor

GitHub location

https://github.com/SODALITE-EU/iac-quality-framework

Documentation

README in the repository

Downloadable artifacts

https://hub.docker.com/r/sodaliteh2020/iacmetrics
https://pypi.org/project/ansiblemetrics/

Development status

Implementation for a set of the metrics for Ansible.
A REST API

Deployment status

Deployed locally and in the Cloud Testbed

Integration status

Partially integrated
Used by Ansible smell detection

Dependencies

None

Next steps

e Add workflow level metrics for Ansible playbooks
e Integrate with IDE to show the quality metrics of
laC developed

Table 19 - Development status of 1aC Quality Assessor

A.2.13 laC Model Repository

Module name

laC Model Repository

D6.6 SODALITE framework - second version Page 55
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/iac-quality-framework
https://hub.docker.com/r/sodaliteh2020/iacmetrics
https://pypi.org/project/ansiblemetrics/

SN Project No 825480.

‘¥ Sodalite

GitHub location

https://github.com/SODALITE-EU/application-optimisati
on

Documentation

README in the repository

Downloadable artifacts

https://hub.docker.com/r/modakopt/modak

Development status

The Model Repository is implemented as a MySQL
database. Tables are organized for the systems and
applications.

Deployment status

Deployed on the Cloud testbed

Integration status

Partially integrated into the stack
Integrated with MODAK

Dependencies

laC Model Repository interacts with the SODALITE IDE
and contains the Performance Model of infrastructure
and application (offline analysis).

Next steps

e Develop the schema for the Model Repository
and define APl for accessing the model
repository;

e Develop the full Application and performance
Model.

Table 20 - Development status of laC Model Repository

A.2.14 Image Registry

Module name

Image Registry

GitHub location

https://github.com/SODALITE-EU/iac-platform-stack

Documentation

README in the SODALITE stack deployment repository -
The creation of the private Image Registry is
implemented through TOSCA Blueprints

Downloadable artifacts

https://hub.docker.com/_/registry/

M12
e Initial creation of the private Docker registry
e initial creation repository
https://github.com/SODALITE-EU/iac-manageme
Development status nt/tree/master/blueprint-samples/blueprints/do
cker-registry
[]
M18
D6.6 SODALITE framework - second version Page 56

© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/application-optimisation
https://github.com/SODALITE-EU/application-optimisation
https://hub.docker.com/r/modakopt/modak
https://github.com/SODALITE-EU/iac-platform-stack
https://github.com/SODALITE-EU/iac-platform-stack/blob/master/README.md
https://hub.docker.com/_/registry/
https://github.com/SODALITE-EU/iac-management/tree/master/blueprint-samples/blueprints/docker-registry
https://github.com/SODALITE-EU/iac-management/tree/master/blueprint-samples/blueprints/docker-registry
https://github.com/SODALITE-EU/iac-management/tree/master/blueprint-samples/blueprints/docker-registry

SN Project No 825480.

‘¥ Sodalite

e creation and configuration included in the
iac-platform-stack
M24
e Improved handling of configuration and cert
management

Deployment status

Deployed on the SODALITE testbed and included in the
SODALITE stack deployment blueprint

Integration status

Integrated with Image Builder and Orchestrator
components

Dependencies

None

Next steps

Improve secure cert handling

Table 21 - Development status of Image Registry

A.2.15 Platform Discovery Service

Module name

Platform Discovery Service

GitHub location

https://github.com/SODALITE-EU/platform-discovery-service

Documentation

README in the GitHub repository

Downloadable artifacts

https://hub.docker.com/r/sodaliteh2020/platform-discovery-
service

Development status

M18
e initial setup and architecture (internal - not on
GitHub)
M24
e xOpera usage and setup
e Creation of the Ansible collections for HPC discovery
(Slurm/Torque)
e Ansible playbooks supporting discovery
e Ansible playbooks supporting TOSCA transformation
usingjinja
e improved tests
e SonarCloud integration and coverage

Deployment status

Deployed on the SODALITE testbed and included in the
SODALITE stack deployment blueprint

Integration status

Deployed on the Testbed and integrated in the blueprint. Not
fully integrated with IDE, not fully integrated with
Semantic-Reasoner.

D6.6 SODALITE framework - second version Page 57
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/platform-discovery-service
https://github.com/SODALITE-EU/platform-discovery-service/blob/master/README.md

Project No 825480.

¥ Sodalite

Dependencies

Depends on the inputs from the IDE component provided by
the Resource Expert

Next steps

Integration with IDE, integration with Semantic Reasoner

Table 22 - Development status of Platform Discovery Service

A.2.16 Development plan for Infrastructure as Code Management layer

The development plan is presented in the following table.

M12

M18

M24

M30

M36

Abstract Model Parser and laC Blueprint Builder

Initial commit,
Flask REST API
with Swagger Ul
for testing,
Dockerized
deployed to
testbed

Making the
parser work to
produce TOSCA
blueprints from
AADM JSON.
Added some unit
tests.
Integration with
IDE.

Integration with
other
components
required.
Added support
for SonarCloud
QA coverage.
Core tests for
pytest
integration.

Refactored the
code.

Solved several
bugs.

Worked on the
issues for the
wrong output.
Made relevant
changes
according to the
change in AADM
JSON.

Several
SonarCloud
suggestions
fixed.

Added
integration with
MODAK.

Some new tests
were added.

Add more unit
tests.

Add
authentication/
authorization for
the security of
the component
as required.

Improve code
efficiency for
better
maintainability.

Runtime Image

Builder and Concrete Image Builder

Initial commit, Added Added support Integration with | Improved
Flask REST API production for SonarCloud IDE, workflows for the
with Swagger Ul | security QA coverage. add image building
for testing, configuration Core tests for multi-architectur | process
Dockerized with nginx as pytest e build variants
deployed to reverse proxy, integration,
testbed allowed Several

configuration for | SonarCloud

host and port suggestions

through ENV fixed,

TOSCA 1.3, Replaced nginx

support for with traefik for

D6.6 SODALITE framework - second version Page 58

© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

‘¥ Sodalite

deployment to
testbed,

Added extensive
tests,

Support building
image variants
with layered
base containers,
Addes support
for the EdgeTPU
exporter to the
Vehicle loT UC,
improved
documentation,

easier container
management
and integration,
upgraded CI/CD
process.

Image Registry
Initial creation of | creation and Improved N/A N/A
the private configuration handling of
Docker registry included in the configuration
iac-platform-sta | and cert
ck management

Application Optimiser

Performance Al Training and HPC-systems Cloud-system Big-data analytics
model HPC parallel support support application
applications support
support
laC Taxonomies
laC Smell laC Best and Bad | laC Bestand Bad | laC Bug Validated Final
Taxonomy Practices Practices Taxonomy (Final | Taxonomies
(Initial Version) Taxonomy Taxonomy (Final | Version)
(Initial Version) Version),
laC Smell
Taxonomy (Final
Version)
laC Bug
Taxonomy

(Initial Version)

laC Bug Prediction and Correction, Verification, and Quality Assurance

D6.6 SODALITE framework - second version
© Copyright Beneficiaries of the SODALITE Project

Page 59

Project No 825480.

‘¥ Sodalite

Smell Detection | Integration of Smell Detection | Suggesting for Suggesting for
in TOSCA and TOSCA Smell TOSCA and Fixes for TOSCA | Fixes for TOSCA
Ansible (Basic Detection with Ansible Smells (Basic Smells (Improved
Support) IDE, (Improved Support), Support),

Structural and Support), Misconfiguration | Improved

Control Flow Linguistic Detection for Integration of

Verification of Anti-Pattern Ansible, Bug/Smell

laC (Basic Detection in Control Flow Detection and

Support), Ansible Ansible Metrics, | Verification with

Linguistic (Improved Control Flow IDE

Anti-Pattern Support), Verification of

Detection of Structural Ansible

Ansible (Basic Ansible Metrics (Improved

Support) Support)

Platform Discovery Service

initial setup and
architecture
(internal - not on
GitHub)

Initial Discovery
for Openstack,
Torque, Slurm,
AWS

Ansible
collections
supporting HPC,
additional
Ansible
collections
supporting
Openstack
security groups
and keypairs

Initial integration
with Semantic
Reasoner,
Improved
integration with
IDE,

Initial
kubernetes
discovery

Support for
TOSCA changes,
Improved
versions of
TOSCA for
Openstack, AWS
and kubernetes
discovery

Table 23 - Development plan for laC Management Layer

Appendix A.3 SODALITE Runtime Layer
A.3.1 Orchestrator + Drivers

Orchestrator

Module name

Orchestrator - xOpera

GitHub location

https://github.com/xlab-si/xopera-opera

Documentation

https://xlab-si.github.io/xopera-opera/

Downloadable artifacts

https://pypi.org/project/opera/

D6.6 SODALITE framework - second version
© Copyright Beneficiaries of the SODALITE Project

Page 60

https://github.com/xlab-si/xopera-opera
https://xlab-si.github.io/xopera-opera/
https://pypi.org/project/opera/

SN Project No 825480.

‘¥ Sodalite

Development status

xOpera is a lightweight orchestrator compliant with
OASIS TOSCA standard. The current compliance is with
the TOSCA Simple Profile in YAML v1.3. It is mostly
developed by XLAB although any contribution is
welcome. Since the initial version, xOpera has been
further developed by RADON and SODALITE projects
making contributions.

Deployment status

Currently the xOpera version used is 0.6.4 which is
deployed end encapsulated as a dockerized REST API
deployed on the testbed.

Integration status

Used as a dockerized REST APl in the SODALITE
deployment pipeline, integrated with IDE and
iac-blueprint-builder. Deploys exporters needed for
monitoring through TOSCA/Ansible blueprints.

Dependencies

Python, Ansible, Openstack

Next steps

Improve redeployment, add TOSCA policy enforcement
implementation, improve secret handling

Table 24 - Development status of Orchestrator - xOpera

ALDE

Module name

ALDE

GitHub location

https://github.com/SODALITE-EU/alde

Documentation

README in the repository

Downloadable artifacts

https://hub.docker.com/r/sodaliteh2020/alde

Development status

ALDE has been developed to its requirements scope.

Deployment status

ALDE is deployed in the Orchestrator environment as part
of the SODALITE Stack

Integration status

ALDE is integrated with a HPC environment and it is
capable of executing Singularity containers through a
REST APl interface.

Dependencies

HPC environment

Next steps No further steps required
Table 25 - Development status of ALDE
D6.6 SODALITE framework - second version Page 61

© Copyright Beneficiaries of the SODALITE Project

SN Project No 825480.

‘¥ Sodalite

A.3.2 Monitoring

Monitoring system

Module name

Monitoring - Prometheus

GitHub location

https://github.com/prometheus/prometheus®

Documentation

https://prometheus.io/

Downloadable artifacts

https://hub.docker.com/r/prom/prometheus

Development status

N/A (third party baseline component integrated in
SODALITE Runtime Layer)

Deployment status

Prometheus is deployed in a Docker container as part of
the SODALITE Stack:
https://github.com/SODALITE-EU/iac-platform-stack/blo
b/baec5ccd39d4d5f3a31815eed94dcfdbobasddfd/docke
r-local/service.yaml#L621

Integration status

Monitoring is integrated with Consul and Alert Manager.
Using Consul, Monitoring request metrics to registered
exporters: Node, IPMI, HPC, Skydive

Dependencies

Monitoring requires Consul

Next steps

No further steps required

Table 26 - Development status of Monitoring - Prometheus

Module name

Monitoring - Consul

GitHub location

l34

https://github.com/hashicorp/consu

Documentation

https://www.consul.io/docs

Downloadable artifacts

https://hub.docker.com/_/consul

Development status

N/A (third party baseline component integrated in
SODALITE Runtime Layer)

Deployment status

Consul is deployed in a Docker container as part of the
SODALITE Stack:
https://github.com/SODALITE-EU/iac-platform-stack/blo
b/master/docker-local/service.yaml#L585

D6.6 SODALITE framework - second version Page 62
© Copyright Beneficiaries of the SODALITE Project

https://github.com/prometheus/prometheus
https://github.com/prometheus/prometheus
https://prometheus.io/
https://hub.docker.com/r/prom/prometheus
https://github.com/SODALITE-EU/iac-platform-stack/blob/baec5ccd39d4d5f3a31815eed94dcfdb9ba8ddfd/docker-local/service.yaml#L621
https://github.com/SODALITE-EU/iac-platform-stack/blob/baec5ccd39d4d5f3a31815eed94dcfdb9ba8ddfd/docker-local/service.yaml#L621
https://github.com/SODALITE-EU/iac-platform-stack/blob/baec5ccd39d4d5f3a31815eed94dcfdb9ba8ddfd/docker-local/service.yaml#L621
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://www.consul.io/docs
https://hub.docker.com/_/consul

SN Project No 825480.

‘¥ Sodalite

Integration status

Consul is connected to Prometheus. Several exporters
register themselves in Consul: Node, IPMI, HPC, Skydive

Dependencies

None

Next steps

No further steps required

Table 27 - Development status of Monitoring - Consul

Alert Manager

Module name

Alert Manager

GitHub location

https://github.com/SODALITE-EU/monitoring-system/tre
e/master/ruleserver

Documentation

https://github.com/SODALITE-EU/monitoring-system/bl
ob/master/ruleserver/README.md

Downloadable artifacts

https://hub.docker.com/r/prom/alertmanager

Development status

Initial version: registration in Prometheus, reception of
monitoring alerts

Deployment status

Alert Manager is deployed in a Docker container as part
of the SODALITE Stack:
https://github.com/SODALITE-EU/iac-platform-stack/blo
b/7b65739d4ff5c334654ec9c1848ee6ff131b62ca/docker-|
ocal/service.yaml#L597

Integration status

Alert Manager is registered within Monitoring -
Prometheus

Dependencies

Python, Flask, Gunicorn

Next steps

- API for managing subscribers

- implementation of scaling or reconfiguration policies

Table 28 - Development status of Alert Manager

Monitoring Dashboard - Grafana

Module name

Monitoring Dashboard - Grafana

GitHub location

https://github.com/grafana/grafana®

D6.6 SODALITE framework - second version Page 63
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/monitoring-system/tree/master/ruleserver
https://github.com/SODALITE-EU/monitoring-system/tree/master/ruleserver
https://github.com/SODALITE-EU/monitoring-system/blob/master/ruleserver/README.md
https://github.com/SODALITE-EU/monitoring-system/blob/master/ruleserver/README.md
https://github.com/SODALITE-EU/iac-platform-stack/blob/7b65739d4ff5c334654ec9c1848ee6ff131b62ca/docker-local/service.yaml#L597
https://github.com/SODALITE-EU/iac-platform-stack/blob/7b65739d4ff5c334654ec9c1848ee6ff131b62ca/docker-local/service.yaml#L597
https://github.com/SODALITE-EU/iac-platform-stack/blob/7b65739d4ff5c334654ec9c1848ee6ff131b62ca/docker-local/service.yaml#L597
https://github.com/grafana/grafana
https://github.com/grafana/grafana

SN Project No 825480.

‘¥ Sodalite

Documentation

https://grafana.com/docs/

Downloadable artifacts

https://grafana.com/grafana/download

Development status

Single instance installed in Atos testbed
Some dashboards configured for monitoring data from
monitoring scraped by Node and HPC Exporters

Deployment status

Manual deployment in Atos testbed

Integration status

Manual integration with Monitoring

Dependencies

Prometheus

Next steps

Orchestration based, blueprint mediated automatic
deployment within the SODALITE stack

Automatic configuration of dashboards for target
execution environments and applications

Table 29 - Development status of Monitoring Dashboard

IPMI Exporter

Module name

IPMI Exporter

GitHub location

https://github.com/SODALITE-EU/ipmi-exporter

Documentation

https://github.com/SODALITE-EU/ipmi-exporter/blob/m
aster/README.md

Downloadable artifacts

N/A (component to be deployed by the SODALITE
Orchestrator)

Development status

Exporter implemented
Registration with Consul

Deployment status

Cl/CD building. Manual deployment

Integration status

IPMI Exporter registers itself in consul upon initialization

Dependencies

Go, Consul

Automation of the registering and deregistering
processes in Consul through Ansible playbooks

Next steps
Automated deployment with Orchestrator
Table 30 - Development status of IPMI Exporter
D6.6 SODALITE framework - second version Page 64

© Copyright Beneficiaries of the SODALITE Project

https://grafana.com/docs/
https://grafana.com/grafana/download
https://github.com/SODALITE-EU/ipmi-exporter
https://github.com/SODALITE-EU/ipmi-exporter/blob/master/README.md
https://github.com/SODALITE-EU/ipmi-exporter/blob/master/README.md

* Project No 825480. ? Sodalite

HPC Exporter
Module name HPC Exporter
GitHub location https://github.com/SODALITE-EU/hpc-exporter

https://github.com/SODALITE-EU/hpc-exporter/blob/ma

Documentation ster/README.md

Docker image for building the container is available at:

Downloadable artifacts https://github.com/SODALITE-EU/hpc-exporter/tree/mas
ter/docker

Prometheus exporter for scraping metrics about job
execution in HPC clusters. Schedulers supported:

Development status - PBSPro

- Slurm
Deployment status Docker based deployment. Manual deployment
Integration status HPC Exporter registers itself in consul upon initialization
Dependencies Go, Consul

Queue metrics
Automation of the registering and deregistering
Next steps processes in Consul through Ansible playbooks

Automated deployment with Orchestrator

Table 31 - Development status of HPC Exporter

Skydive Exporter

Module name prometheus-skydive-connector

GitHub location https://github.com/skydive-project/skydive-flow-exporte
r/tree/master/prom_sky_con

https://github.com/skydive-project/skydive-flow-exporte

r/blob/master/prom_sky_con/README.md
Documentation
http://skydive.network/blog/prometheus-connector.htm

l

D6.6 SODALITE framework - second version Page 65
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/hpc-exporter
https://github.com/SODALITE-EU/hpc-exporter/blob/master/README.md
https://github.com/SODALITE-EU/hpc-exporter/blob/master/README.md
https://github.com/SODALITE-EU/hpc-exporter/tree/master/docker
https://github.com/SODALITE-EU/hpc-exporter/tree/master/docker

* Project No 825480. ” Sodalite

https://hub.docker.com/r/sodaliteh2020/prometheus-sk

Downloadable artifacts .
ydive-connector

Basic connector implemented. Pushed to upstream.
Development status Registration with Consul.

Deployed in a Docker container or manually.

Deployment status Incorporated into SODALITE platform blueprint.
Integration status Registers in consul via platform stack
Dependencies Skydive, Prometheus

Next steps Extend types of metrics collected.

Table 32 - Development status of Skydive Exporter

A.3.3 Deployment Refactorer

Module name Deployment Refactorer
GitHub location https://github.com/SODALITE-EU/refactoring-ml
Documentation README in the repository

https://hub.docker.com/r/sodaliteh2020/rule_based_ref
actorer

https://hub.docker.com/r/sodaliteh2020/fo_perf_predict
or_api

Downloadable artifacts

We developed the component and demonstrated its
practicality and feasibility by applying it to 1) an
extension of the RuBiS benchmark application®®*’
deployed on Google’s Compute Engine (92 deployment
alternatives), 2) Teastore microservice benchmark
application on Google Kubernetes Engine (78
deployment alternatives) and SODALITE snow use case.

Development status We developed the rule-based adaptation support, and
validated it with three key scenarios in the Vehicle IoT
use case: location-aware redeployment, alert-driven
redeployment: Cloud alerts, alert-driven redeployment:
Edge alerts.

We have been experimenting with a recent microserice
memory anomaly dataset® using three predictive
algorithms Random Forest, Decision Tree and DL with

D6.6 SODALITE framework - second version Page 66
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/refactoring-ml
https://hub.docker.com/r/sodaliteh2020/rule_based_refactorer
https://hub.docker.com/r/sodaliteh2020/rule_based_refactorer
https://hub.docker.com/r/sodaliteh2020/fo_perf_predictor_api
https://hub.docker.com/r/sodaliteh2020/fo_perf_predictor_api

* Project No 825480. " Sodalite

AdaBoost. We have started to collect a service network
anomaly dataset with TeaStore microservice
benchmark®, Google kubernetes Engine, and SODALITE
SkyDive monitoring support.

Deployment status Deployed locally and in the Cloud Testbed

Integrated with Orchestrator, Monitoring Layers, and

Integration status Refactoring Option Discoverer

This module depends on Refactoring Option Discoverer,
Dependencies Node Manager, Deployment Preparation API, Monitoring
Layer

e Integrate with Node Manager

e Complete performance anomaly detection

Next steps support

e Support all deployment refactoring scenarios in
SODALITE use cases.

Table 33 - Development status of Deployment Refactorer

A.3.4 Node Manager
Module name reactoring-ct
GitHub location https://github.com/SODALITE-EU/refactoring-ct

https://github.com/SODALITE-EU/refactoring-ct/blob/m

Documentation aster/README.md

Downloadable artifacts N/A

Development status Implementation completed

Deployed on a private cloud. The component is ready to
Deployment status be deployed in the testbed. TOSCA blueprint to be
completed.

Missing integration with the SODALITE Monitoring

Integration status infrastructure and with Deployment Refactorer

Dependencies Python, Kubernetes

Integration with SODALITE Monitoring and Deployment

Next st
ext steps Refactorer

Table 34 - Development status of Node Manager

D6.6 SODALITE framework - second version Page 67
© Copyright Beneficiaries of the SODALITE Project

SN Project No 825480.

‘¥ Sodalite

A.3.5 Refactoring Option Discoverer

Module name

Refactoring Option Discoverer

GitHub location

https://github.com/SODALITE-EU/refactoring-option-dis
coverer

Documentation

README in the repository

Downloadable artifacts

https://hub.docker.com/r/sodaliteh2020/refactoring_opt
ion_discoverer

Development status

Can discover compute and software nodes by
matchmaking on node properties, node capabilities and
requirements, and node policies (TOSCA)

Deployment status

Deployed locally and in the Cloud Testbed

Integration status

Integrated with Deployment Refactorer and Knowledge
Base/Semantic Reasoner.

Dependencies

Depends on the Semantic Knowledge Base/Semantic
Reasoner

Next steps

Improve the existing matchmaking capabilities to
support all dynamic resource discovery and composition
requirements by SODALITE case studies

Table 35 - Development status of Refactoring Option Discoverer

A.3.6 xOpera REST API

Module name

Xopera-rest-api

GitHub location

https://github.com/SODALITE-EU/xopera-rest-api

Documentation

Extensive README in the repository

https://github.com/SODALITE-EU/xopera-rest-api/blob/
master/README.md

Downloadable artifacts

https://hub.docker.com/r/sodaliteh2020/xopera-rest-api

Development status

Stable, adding functional requirements from SODALITE
created in GitHub issues

D6.6 SODALITE framework - second version Page 68
© Copyright Beneficiaries of the SODALITE Project

https://github.com/SODALITE-EU/refactoring-option-discoverer
https://github.com/SODALITE-EU/refactoring-option-discoverer
https://hub.docker.com/r/sodaliteh2020/refactoring_option_discoverer
https://hub.docker.com/r/sodaliteh2020/refactoring_option_discoverer
https://github.com/SODALITE-EU/xopera-rest-api
https://github.com/SODALITE-EU/xopera-rest-api/blob/master/README.md
https://github.com/SODALITE-EU/xopera-rest-api/blob/master/README.md
https://hub.docker.com/r/sodaliteh2020/xopera-rest-api

* Project No 825480. /’ Sodalite

Automated Deploy on the testbed staging environment
Deployment status through xOpera and TOSCA blueprints; implemented in
the Jenkins CI/CD workflow

Used as a dockerized REST APl in the SODALITE
deployment pipeline (through IDE and
iac-blueprint-builder); deploys exporters needed for
Integration status monitoring through TOSCA/Ansible blueprints - missing
Adding rules to AlertManager through TOSCA blueprints,
integration with node-manager for deploying
applications

Python, Flask, connexion, Ansible, OpestackAPI, boto,
Dependencies boto3

support for OpenFaaS, improved interface covering
Next steps newly introduced commands in xOpera for feature
support, improved security

Table 36 - Development status of xOpera REST API

A.3.7. Kubernetes Edge Components

Kubernetes Edge components are split into multiple categories (labeller, controllers/monitors,
device plugins, and exporters). While these all form a part of the Edge deployment, most of these
components are general Kubernetes controllers and have no specific dependence on the Edge. A
number of upstream components are also used, which have been extended for the Edge case.

Controllers /[Monitors

Module name k8s-node-label-monitor

https://github.com/adaptant-labs/k8s-node-label-monit
or

GitHub location

https://github.com/adaptant-labs/k8s-node-label-monit

Documentation or/blob/master/README.md

https://github.com/adaptant-labs/k8s-node-label-monit

Downloadable artifacts
or/releases

Initial implementation done. Should be extended for
Development status annotation monitoring in order to provide notice of
device plugin resource allocation/availability changes.

Deployed on Edge Testbed. Can be run as a standalone
Deployment status Docker image, or installed into a Kubernetes cluster
directly via manifest or Helm chart.

Integration status Part of Edge stack, but not Edge or HW-specific.

D6.6 SODALITE framework - second version Page 69
© Copyright Beneficiaries of the SODALITE Project

https://github.com/adaptant-labs/k8s-node-label-monitor
https://github.com/adaptant-labs/k8s-node-label-monitor
https://github.com/adaptant-labs/k8s-node-label-monitor/blob/master/README.md
https://github.com/adaptant-labs/k8s-node-label-monitor/blob/master/README.md
https://github.com/adaptant-labs/k8s-node-label-monitor/releases
https://github.com/adaptant-labs/k8s-node-label-monitor/releases

SN Project No 825480.

‘¥ Sodalite

Dependencies

Go, Kubernetes

Next steps

Extend for annotation monitoring.

Table 37 - Development status of K8s Node Label Monitor

Labellers

Module name

k8s-dt-node-labeller

GitHub location

https://github.com/adaptant-labs/k8s-dt-node-labeller

Documentation

https://github.com/adaptant-labs/k8s-dt-node-labeller/
blob/master/README.md

Downloadable artifacts

https://github.com/adaptant-labs/k8s-dt-node-labeller/r
eleases

Development status

Initial implementation done.

Deployment status

Deployed on Edge Testbed. Can be run as a standalone
Docker image, or installed into a Kubernetes cluster
directly via manifest or Helm chart.

Integration status

Part of Edge stack, Edge-specific.

Dependencies

Go, Kubernetes

Next steps

None

Table 38 - Development status of K8s DeviceTree Node Labeller

Module name

k8s-auto-labeller

GitHub location

https://github.com/adaptant-labs/k8s-auto-labeller

Documentation

https://github.com/adaptant-labs/k8s-auto-labeller/blob
/master/README.md

Downloadable artifacts

https://github.com/adaptant-labs/k8s-auto-labeller/rele
ases

Development status

Initial implementation done. Label aliases and sources
will need to be updated for matching the final
deployment configuration.

D6.6 SODALITE framework - second version Page 70
© Copyright Beneficiaries of the SODALITE Project

https://github.com/adaptant-labs/k8s-dt-node-labeller
https://github.com/adaptant-labs/k8s-dt-node-labeller/blob/master/README.md
https://github.com/adaptant-labs/k8s-dt-node-labeller/blob/master/README.md
https://github.com/adaptant-labs/k8s-dt-node-labeller/releases
https://github.com/adaptant-labs/k8s-dt-node-labeller/releases
https://github.com/adaptant-labs/k8s-auto-labeller
https://github.com/adaptant-labs/k8s-auto-labeller/blob/master/README.md
https://github.com/adaptant-labs/k8s-auto-labeller/blob/master/README.md
https://github.com/adaptant-labs/k8s-auto-labeller/releases
https://github.com/adaptant-labs/k8s-auto-labeller/releases

SN Project No 825480.

¥ Sodalite

Deployment status

Deployed on Edge Testbed. Can be run as a standalone
Docker image, or installed into a Kubernetes cluster
directly via manifest or Helm chart.

Integration status

Part of Edge stack, but not Edge or HW-specific.

Dependencies

Go, Kubernetes

Next steps

Extend labels to match final HW and deployed device
plugin configuration.

Table 39 - Development status of K8s Node Auto Labeller

Device Plugins

A number of accelerator-specific device plugins are installed into the Kubernetes cluster in order to
provide device management and resource allocation controls for Kubernetes pod scheduling. Both
the EdgeTPU and NVIDIA GPUs have pre-existing device plugins which have been extended for the
Edge case, and can be used directly. No device plugin for the Intel NCS2 accelerator existed, so one

was developed:

Module name

ncs2-device-plugin

GitHub location

https://github.com/adaptant-labs/ncs2-device-plugin

Documentation

https://github.com/adaptant-labs/ncs2-device-plugin/bl
ob/master/README.md

Downloadable artifacts

https://github.com/adaptant-labs/ncs2-device-plugin/rel
eases

Development status

Node-label based device information provided,
implementation of device plugin APl to enable
automated resource allocation and limits in progress.

Deployment status

Deployed on Edge Testbed. Can be run as a standalone
Docker image, or installed into a Kubernetes cluster
directly via manifest or Helm chart.

Integration status

Part of Edge stack.

Dependencies

Python, Kubernetes, Intel NCS2 accelerator

Next steps Extension for Kubernetes device plugin API
Table 40 - Development status of Intel NCS2 Device Plugin
D6.6 SODALITE framework - second version Page 71

© Copyright Beneficiaries of the SODALITE Project

https://github.com/adaptant-labs/ncs2-device-plugin
https://github.com/adaptant-labs/ncs2-device-plugin/blob/master/README.md
https://github.com/adaptant-labs/ncs2-device-plugin/blob/master/README.md
https://github.com/adaptant-labs/ncs2-device-plugin/releases
https://github.com/adaptant-labs/ncs2-device-plugin/releases

* Project No 825480. ’ Sodalite

Exporters

Note that each Edge Gateway is provisioned with its own set of exporters. By default, the
Kubernetes instance of Prometheus and AlertManager is cluster-wide, and a Node Exporter
instance is automatically scheduled on any node joining the cluster. In addition to the Node
Exporter, a number of accelerator-specific exporters are scheduled on any Edge nodes that satisfy
the affinity constraints (e.g. dependency labels and annotations as exposed by the device plugins).

Module name prometheus_ncs2_exporter

https://github.com/adaptant-labs/prometheus_ncs2_ex

GitHub location
porter

https://github.com/adaptant-labs/prometheus_ncs2_ex

Documentation porter/blob/master/README.md

https://github.com/adaptant-labs/prometheus_ncs2_ex

Downloadable artifacts
porter/releases

Basic exporter implemented. The NCS2 device requires a
valid ML model to be loaded before the temperature can
be read, so any service wishing to monitor the
temperature will need to provide an instantiation of the
exporter itself - an APl is provided for this, and the steps
are documented in the README.

Development status

Deployed on Edge Testbed. Can be run as a standalone
Deployment status Docker image, or installed into a Kubernetes cluster
directly via manifest or Helm chart.

No special configuration is required in Kubernetes,
exporter is automatically scraped by Prometheus. In
order for the thermal metric to be exposed, it must be
instantiated within an inference application.

Integration status

Dependencies Python, Kubernetes, Prometheus, Intel NCS2 accelerator

Next steps Integration with inference application

Table 41 - Development status of Intel NCS2 Exporter

Module name edgetpu-exporter

GitHub location https://github.com/adaptant-labs/edgetpu-exporter

https://github.com/adaptant-labs/edgetpu-exporter/blo

Documentation b/master/README.md

D6.6 SODALITE framework - second version Page 72
© Copyright Beneficiaries of the SODALITE Project

https://github.com/adaptant-labs/prometheus_ncs2_exporter
https://github.com/adaptant-labs/prometheus_ncs2_exporter
https://github.com/adaptant-labs/prometheus_ncs2_exporter/blob/master/README.md
https://github.com/adaptant-labs/prometheus_ncs2_exporter/blob/master/README.md
https://github.com/adaptant-labs/prometheus_ncs2_exporter/releases
https://github.com/adaptant-labs/prometheus_ncs2_exporter/releases
https://github.com/adaptant-labs/edgetpu-exporter
https://github.com/adaptant-labs/edgetpu-exporter/blob/master/README.md
https://github.com/adaptant-labs/edgetpu-exporter/blob/master/README.md

Project No 825480.

¥ Sodalite

Downloadable artifacts

N/A

Development status

Basic exporter implemented.

Deployment status

Deployed on Edge Testbed. Can be run as a standalone
Docker image, or installed into a Kubernetes cluster
directly via manifest or Helm chart.

Integration status

No special configuration is required in Kubernetes,
exporter is automatically scraped by Prometheus.

Dependencies

Go, Kubernetes, Prometheus, EdgeTPU accelerator

Next steps

None

Table 42 - Development status of Google Coral EdgeTPU Exporter

A.3.7 Development plan for Runtime Layer

The development plan is presented in the following table.

M12 M18 M24 M30 M36
Orchestrator

Deployment and Merge Implementation | Enforcement of Improved
provisioning of imported of Diff and TOSCA policies, | handling of
Openstack and topology Update security, secrets through
dockerized templates, commands fully | improved parser | local Ansible
components, Parallel task supporting validation Vault, support
initial iac modules | execution, partial output, TOSCA 2.0 simple
covering Torque Deployment redeployment Improved yaml standard
deployment Resume and Covered TOSCA | support for

force start policy definition, | reconfiguration

feature, intrinsic function | scenarios -

Added tests support, update method

and integration | Python library in interface that

tests, API, would allow not

Better support | Improved to remove

for documentation, | instances

deployment of

TOSCA CSAR

Monitoring

Monitoring Edge Exporter, | Consul, Alert Manager Automatic
instance, Node IPMI Exporter, | Monitoring subscription API, | dashboard
Exporter Monitoring integration with | Scaling and configuration,

Dashboard Consul, configuration Monitoring of

HPC Exporter, alert HPC queues
D6.6 SODALITE framework - second version Page 73

© Copyright Beneficiaries of the SODALITE Project

* Project No 825480. ? Sodalite

Skydive management,
Exporter, Automatic
Alert Manager, deployment by
Alert rules Orchestrator
(monitoring,
dashboard,
exporters),
automatic

registration/dere
gistration of
exportersin
Consul

Deployment Refactorer

Basic rule-based Integration Improved Performance Integration with
refactoring with rule-based Anomaly Node Manager
decision making, Monitoring refactoring with | Detection,
Integration with Layer, high-level Switching
Orchestrator, More improved | support, between
Asingle machine machine Complete Alternative
learning algorithm | learning Performance Deployments
for predicting algorithms Prediction (Improved
performance Machine support),
Learning Support most
Pipeline, Refactoring
Switching Scenarios in
between SODALITE Use
Alternative Cases
Deployments
(Basic support),

Integration with
Refactoring
Option
Discoverer

Node Manager

Basic GPU/CPU Supervisor Smart GPU/CPU | Deploymentin Integration with
loadbalancing, loadbalancer, the SODALITE Deployment
Control theoretical Integration in infrastructure, Refactorer
planners, Kubernetes, Integration with
Monitoring Support for Monitoring

TOSCA inputs

Refactoring Option Discoverer

Matchmaking Matchmaking Matchmaking Matchmaking Support for
based on based on based Node based Node Dynamic
D6.6 SODALITE framework - second version Page 74

© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

‘¥ Sodalite

constraints on constraintson | Policies (Basic Policies Resource
Node properties Node Support), (Improved Discovery
(Basic Support) properties Matchmaking Support), Scenariosin
(Improved based Node Matchmaking SODALITE Use
Support) Requirements based Node Cases
and Capabilities | Requirements
(Basic Support) and Capabilities
(Improved
Support)
xOpera REST API
Initial dockerized | Support for Improved Git Support for Improved
REST API release xOpera 0.5.7 handling plugin, | OpenFaas, support for
covering Torque features, Using xOperaas | Improved secret | secure storage
and Openstack Included plugin | API calls, handling, handling, REST
deployments, for Git Moved to REST API support | APl support for
Initial handling of | handling connexion for for newly added | newly added
deployment blueprint easier REST API commandsin commands in
session and states, | deployments design handling, | xOpera, xOpera
Initial partial shared among | replaced reverse | Improved
redeployment users, proxy form nginx | integration with
Support TOSCA | to traefik (fora refactoring,
1.3yaml simplified Docker | Improved
version, container support for
corrected detection and Kubernetes,
access to management), support for
Openstack now | implemented GoogleCloud
possible support for
through Kubernetes
environment support for AWS
variables, collections,
Additional JWT | support for IAM
support token
authentication
through
introspection,
support for
handling secrets,
support for
redeployment
through diff and
update xOpera
commands
Kubernetes Controller for Edge
Initial Edge Resource & Expanded Dynamic alerting | Per-node
Exporter Capabilities run-time rules matching managed /
implementation discovery, monitoring of Edge node scoped
D6.6 SODALITE framework - second version Page 75

© Copyright Beneficiaries of the SODALITE Project

Project No 825480.

‘¥ Sodalite

node labelling.

node
annotations,
integration with
accelerator
device plugins.

Self-contained
instantiation of
Edge nodes via
Operator SDK.

profile.

Dynamic
addition and
removal of
heterogeneous
accelerators.

Pod/Deployment
migration
between
accelerator

types.

deployments,
scaling (allowing
SODALITE to
refactor a
node-specific
instance of a
deployment,
without
impacting
deployments on
other nodesin
the cluster).

Table 43 - Development plan for Runtime Layer

Appendix A.4 SODALITE Security Components
A.4.1 1AM Introspection

Module name

IAM Introspection - Keycloak

GitHub location

https://github.com/keycloak/keycloak

Documentation

https://www.keycloak.org/documentation.html

Downloadable artifacts

https://hub.docker.com/r/jboss/keycloak

N/A (third party baseline component integrated in

Development status

SODALITE platform)

Deployment status

Deployed in the Cloud testbed

Integration status

Integrated with IDE, Semantic Reasoner, Platform

Discovery Service, xopera-rest-api, ...

Dependencies

Next steps

Integrate with laC Management and Runtime Layer

Table 44 - Development status of IAM Introspection

A.4.2 Secrets Management

Module name

Secrets Management - HashiCorp Vault

GitHub location

https://github.com/hashicorp/vault

D6.6 SODALITE framework - second version

Page 76

© Copyright Beneficiaries of the SODALITE Project

https://github.com/keycloak/keycloak
https://www.keycloak.org/documentation.html
https://hub.docker.com/r/jboss/keycloak
https://github.com/hashicorp/vault

* Project No 825480. ? Sodalite

Documentation https://www.vaultproject.io/docs
Downloadable artifacts https://hub.docker.com/_/vault
N/A (third party baseline component integrated in
Development status SODALITE platform)
Deployment status Deployed in the Cloud testbed

Integrated with IDE, Semantic Reasoner, Platform

Integration status Discovery Service, xopera-rest-api, ...

Dependencies

Next steps Integrate with laC Management and Runtime Layer

Table 45 - Development status of Secrets Management

D6.6 SODALITE framework - second version Page 77
© Copyright Beneficiaries of the SODALITE Project

https://www.vaultproject.io/docs
https://hub.docker.com/_/vault

